Large language models (LLMs) have shown remarkable promise in simulating human language and behavior. This study investigates how integrating persona variables—demographic, social, and behavioral factors—impacts LLMs’ ability to simulate diverse perspectives. We find that persona variables account for <10% variance in annotations in existing subjective NLP datasets. Nonetheless, incorporating persona variables via prompting in LLMs provides modest but statistically significant improvements. Persona prompting is most effective in samples where many annotators disagree, but their disagreements are relatively minor. Notably, we find a linear relationship in our setting: the stronger the correlation between persona variables and human annotations, the more accurate the LLM predictions are using persona prompting. In a zero-shot setting, a powerful 70b model with persona prompting captures 81% of the annotation variance achievable by linear regression trained on ground truth annotations. However, for most subjective NLP datasets, where persona variables have limited explanatory power, the benefits of persona prompting are limited.
Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generated texts and determine the preferred one, have been employed in a wide range of applications. However, LLMs exhibit preference biases and worrying sensitivity to prompt designs. In this work, we first reveal that the predictive preference of LLMs can be highly brittle and skewed, even with semantically equivalent instructions. We find that fairer predictive preferences from LLMs consistently lead to judgments that are better aligned with humans. Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO, which aims to produce fairer preference decisions and improve the alignment of LLM evaluators with human judgments. To this end, we propose a zero-shot learning objective based on the preference decision fairness. ZEPO demonstrates substantial performance improvements over state-of-the-art LLM evaluators, without requiring labeled data, on representative meta-evaluation benchmarks. Our findings underscore the critical correlation between preference fairness and human alignment, positioning ZEPO as an efficient prompt optimizer for bridging the gap between LLM evaluators and human judgments.
Top-view perspective denotes a typical way in which humans read and reason over different types of maps, and it is vital for localization and navigation of humans as well as of ‘non-human’ agents, such as the ones backed by large Vision-Language Models (VLMs). Nonetheless, spatial reasoning capabilities of modern VLMs in this setup remain unattested and underexplored. In this work, we study their capability to understand and reason over spatial relations from the top view. The focus on top view also enables controlled evaluations at different granularity of spatial reasoning; we clearly disentangle different abilities (e.g., recognizing particular objects versus understanding their relative positions). We introduce the TopViewRS (Top-View Reasoning in Space) dataset, consisting of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input. We then use it to study and evaluate VLMs across 4 perception and reasoning tasks with different levels of complexity. Evaluation of 10 representative open- and closed-source VLMs reveals the gap of more than 50% compared to average human performance, and it is even lower than the random baseline in some cases. Although additional experiments show that Chain-of-Thought reasoning can boost model capabilities by 5.82% on average, the overall performance of VLMs remains limited. Our findings underscore the critical need for enhanced model capability in top-view spatial reasoning and set a foundation for further research towards human-level proficiency of VLMs in real-world multimodal tasks.
Large Language Models (LLMs) have demonstrated remarkable capability in a variety of NLP tasks. However, LLMs are also prone to generate nonfactual content. Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model’s confidence on its generation, thereby aiding in the mitigation of nonfactual outputs. Existing research on UQ predominantly targets short text generation, typically yielding brief, word-limited responses. However, real-world applications frequently necessitate much longer responses. Our study first highlights the limitations of current UQ methods in handling long text generation. We then introduce Luq and its two variations, a series of novel sampling-based UQ approaches specifically designed for long text. Our findings reveal that Luq outperforms existing baseline methods in correlating with the model’s factuality scores (negative coefficient of -0.85 observed for Gemini Pro). To further improve the factuality of LLM responses, we propose Luq-Ensemble, a method that ensembles responses from multiple models and selects the response with the lowest uncertainty. The ensembling method greatly improves the response factuality upon the best standalone LLM.
Large language models (LLMs) have shown great abilities of solving various natural language tasks in different domains. Due to the training objective of LLMs and their pre-training data, LLMs are not very well equipped for tasks involving structured data generation. We propose a framework, Prompting with Iterative Verification (PiVe), to improve graph-based generative capability of LLMs. We show how a small language model could be trained to act as a verifier module for the output of an LLM(i.e., ChatGPT, GPT-4), and to iteratively improve its performance via fine-grained corrective instructions. We also show how the verifier module could apply iterative corrections offline for a more cost-effective solution to the text-to-graph generation task. Experiments on three graph-based datasets show consistent improvement gained via PiVe. Additionally, we create GenWiki-HIQ and highlight that the verifier module can be used as a data augmentation tool to help improve the quality of automatically generated parallel text-graph datasets.
In light of recent advances in large language models (LLMs), the expectations for the next generation of virtual assistants include enhanced naturalness and adaptability across diverse usage scenarios. However, the creation of high-quality annotated data for Task-Oriented Dialog (TOD) is recognized to be slow and costly. To address these challenges, we introduce Task-Oriented Automatic Dialogs (TOAD), a novel and scalable TOD dataset along with its automatic generation pipeline. The TOAD dataset simulates realistic app context interaction and provide a variety of system response style options. Two aspects of system response styles are considered, verbosity level and users’ expression mirroring. We benchmark TOAD on two response generation tasks, and the results show that modeling more verbose responses or responses without user expression mirroring is more challenging.
As large language models (LLMs) gain widespread adoption, ensuring they cater to diverse user needs has become increasingly important. While many researchers have studied LLM personalization and role-playing, they primarily use LLM-as-a-Judge for evaluation without thoroughly examining its validity. This paper investigates the reliability of LLM-as-a-Personalized-Judge—asking LLMs to judge user preferences based on persona. Our results suggest that LLM-as-a-Personalized-Judge is less reliable for personalization than previously believed, showing low agreement with human ground truth. We observed that the personas provided to the LLM often have limited predictive power for the tasks, leading us to introduce verbal uncertainty estimation. We find that powerful LLMs are aware of the certainty of their prediction and can achieve high agreement with ground truth on high-certainty samples, indicating a promising approach for building reliable and scalable proxies for evaluating LLM personalization. Our human annotation reveals that third-person crowd worker evaluations of personalized preferences are even worse than LLM predictions, highlighting the challenges of evaluating LLM personalization.
Position bias in large language models (LLMs) leads to difficulty in accessing information retrieved from the retriever, thus downgrading the effectiveness of Retrieval-Augmented Generation (RAG) approaches in open-question answering. Recent studies reveal that this bias is related to disproportional attention across the context. In this work, we examine how to direct LLMs to allocate more attention towards a selected segment of the context through prompting, aiming to compensate for the shortage of attention. We find that language models do not have relative position awareness of the context but can be directed by promoting instruction with an exact document index. Our analysis contributes to a deeper understanding of position bias in LLMs and provides a pathway to mitigate this bias by instruction, thus benefiting LLMs in locating and utilizing relevant information from retrieved documents in RAG applications. The code and data in our study have been made publicly available.
Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective.However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence.The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles.Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models’ capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.
Pretrained multilingual language models (LMs) can be successfully transformed into multilingual sentence encoders (SEs; e.g., LaBSE, xMPNet) via additional fine-tuning or model distillation with parallel data. However, it remains unclear how to best leverage them to represent sub-sentence lexical items (i.e., words and phrases) in cross-lingual lexical tasks. In this work, we probe SEs for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs. We also devise a simple yet efficient method for exposing the cross-lingual lexical knowledge by means of additional fine-tuning through inexpensive contrastive learning that requires only a small amount of word translation pairs. Using bilingual lexical induction (BLI), cross-lingual lexical semantic similarity, and cross-lingual entity linking as lexical probing tasks, we report substantial gains on standard benchmarks (e.g., +10 Precision@1 points in BLI). The results indicate that the SEs such as LaBSE can be ‘rewired’ into effective cross-lingual lexical encoders via the contrastive learning procedure, and that it is possible to expose more cross-lingual lexical knowledge compared to using them as off-the-shelf SEs. This way, we also provide an effective tool for harnessing ‘covert’ multilingual lexical knowledge hidden in multilingual sentence encoders.
Biomedical named entity recognition is one of the core tasks in biomedical natural language processing (BioNLP). To tackle this task, numerous supervised/distantly supervised approaches have been proposed. Despite their remarkable success, these approaches inescapably demand laborious human effort. To alleviate the need of human effort, dictionary-based approaches have been proposed to extract named entities simply based on a given dictionary. However, one downside of existing dictionary-based approaches is that they are challenged to identify concept synonyms that are not listed in the given dictionary, which we refer as the synonym generalization problem. In this study, we propose a novel Synonym Generalization (SynGen) framework that recognizes the biomedical concepts contained in the input text using span-based predictions. In particular, SynGen introduces two regularization terms, namely, (1) a synonym distance regularizer; and (2) a noise perturbation regularizer, to minimize the synonym generalization error. To demonstrate the effectiveness of our approach, we provide a theoretical analysis of the bound of synonym generalization error. We extensively evaluate our approach on a wide range of benchmarks and the results verify that SynGen outperforms previous dictionary-based models by notable margins. Lastly, we provide a detailed analysis to further reveal the merits and inner-workings of our approach.
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than thousands of data points, DePlot+LLM with just one-shot prompting achieves a 29.4% improvement over finetuned SOTA on human-written queries from the task of chart QA.
Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain but also involves interactions with the physical and social environment. With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding. Inspired by cognitive theories, we propose POSQA: a Physical Object Size Question Answering dataset with simple size comparison questions to examine the extremity and analyze the potential mechanisms of the embodied comprehension of the latest LLMs. We show that even the largest LLMs today perform poorly under the zero-shot setting. We then push their limits with advanced prompting techniques and external knowledge augmentation. Furthermore, we investigate whether their real-world comprehension primarily derives from contextual information or internal weights and analyse the impact of prompt formats and report bias of different objects. Our results show that real-world understanding that LLMs shaped from textual data can be vulnerable to deception and confusion by the surface form of prompts, which makes it less aligned with human behaviours.
Event extraction is a complex task that involves extracting events from unstructured text. Prior classification-based methods require comprehensive entity annotations for joint training, while newer generation-based methods rely on heuristic templates containing oracle information such as event type, which is often unavailable in real-world scenarios. In this study, we consider a more realistic task setting, namely the Oracle-Free Event Extraction (OFEE) task, where only the input context is given, without any oracle information including event type, event ontology, or trigger word. To address this task, we propose a new framework, COFFEE. This framework extracts events solely based on the document context, without referring to any oracle information. In particular, COFFEE introduces a contrastive selection model to refine the generated triggers and handle multi-event instances. Our proposed COFFEE outperforms state-of-the-art approaches in the oracle-free setting of the event extraction task, as evaluated on two public variants of the ACE05 benchmark. The code used in our study has been made publicly available.
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 66 types of spatial relations in English (e.g., under, in front of, facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: The human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs’ by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.1
Language models (LMs) trained on raw texts have no direct access to the physical world. Gordon and Van Durme (2013) point out that LMs can thus suffer from reporting bias: texts rarely report on common facts, instead focusing on the unusual aspects of a situation. If LMs are only trained on text corpora and naively memorise local co-occurrence statistics, they thus naturally would learn a biased view of the physical world. While prior studies have repeatedly verified that LMs of smaller scales (e.g., RoBERTa, GPT-2) amplify reporting bias, it remains unknown whether such trends continue when models are scaled up. We investigate reporting bias from the perspective of colour in larger language models (LLMs) such as PaLM and GPT-3. Specifically, we query LLMs for the typical colour of objects, which is one simple type of perceptually grounded physical common sense. Surprisingly, we find that LLMs significantly outperform smaller LMs in determining an object’s typical colour and more closely track human judgments, instead of overfitting to surface patterns stored in texts. This suggests that very large models of language alone are able to overcome certain types of reporting bias that are characterized by local co-occurrences.
Being able to train Named Entity Recognition (NER) models for emerging topics is crucial for many real-world applications especially in the medical domain where new topics are continuously evolving out of the scope of existing models and datasets. For a realistic evaluation setup, we introduce a novel COVID-19 news NER dataset (COVIDNEWS-NER) and release 3000 entries of hand annotated strongly labelled sentences and 13000 auto-generated weakly labelled sentences. Besides the dataset, we propose CONTROSTER, a recipe to strategically combine weak and strong labels in improving NER in an emerging topic through transfer learning. We show the effectiveness of CONTROSTER on COVIDNEWS-NER while providing analysis on combining weak and strong labels for training. Our key findings are: (1) Using weak data to formulate an initial backbone before tuning on strong data outperforms methods trained on only strong or weak data. (2) A combination of out-of-domain and in-domain weak label training is crucial and can overcome saturation when being training on weak labels from a single source.
Research in stance detection has so far focused on models which leverage purely textual input. In this paper, we investigate the integration of textual and financial signals for stance detection in the financial domain. Specifically, we propose a robust multi-task neural architecture that combines textual input with high-frequency intra-day time series from stock market prices. Moreover, we extend wt–wt, an existing stance detection dataset which collects tweets discussing Mergers and Acquisitions operations, with the relevant financial signal. Importantly, the obtained dataset aligns with Stander, an existing news stance detection dataset, thus resulting in a unique multimodal, multi-genre stance detection resource. We show experimentally and through detailed result analysis that our stance detection system benefits from financial information, and achieves state-of-the-art results on the wt–wt dataset: this demonstrates that the combination of multiple input signals is effective for cross-target stance detection, and opens interesting research directions for future work.
Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the ‘C2-tuned’ mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.
Knowledge probing is crucial for understanding the knowledge transfer mechanism behind the pre-trained language models (PLMs). Despite the growing progress of probing knowledge for PLMs in the general domain, specialised areas such as the biomedical domain are vastly under-explored. To facilitate this, we release a well-curated biomedical knowledge probing benchmark, MedLAMA, constructed based on the Unified Medical Language System (UMLS) Metathesaurus. We test a wide spectrum of state-of-the-art PLMs and probing approaches on our benchmark, reaching at most 3% of acc@10. While highlighting various sources of domain-specific challenges that amount to this underwhelming performance, we illustrate that the underlying PLMs have a higher potential for probing tasks. To achieve this, we propose Contrastive-Probe, a novel self-supervised contrastive probing approach, that adjusts the underlying PLMs without using any probing data. While Contrastive-Probe pushes the acc@10 to 28%, the performance gap still remains notable. Our human expert evaluation suggests that the probing performance of our Contrastive-Probe is still under-estimated as UMLS still does not include the full spectrum of factual knowledge. We hope MedLAMA and Contrastive-Probe facilitate further developments of more suited probing techniques for this domain. Our code and dataset are publicly available at https://github.com/cambridgeltl/medlama.
Knowledge bases (KBs) contain plenty of structured world and commonsense knowledge. As such, they often complement distributional text-based information and facilitate various downstream tasks. Since their manual construction is resource- and time-intensive, recent efforts have tried leveraging large pretrained language models (PLMs) to generate additional monolingual knowledge facts for KBs. However, such methods have not been attempted for building and enriching multilingual KBs. Besides wider application, such multilingual KBs can provide richer combined knowledge than monolingual (e.g., English) KBs. Knowledge expressed in different languages may be complementary and unequally distributed: this implies that the knowledge available in high-resource languages can be transferred to low-resource ones. To achieve this, it is crucial to represent multilingual knowledge in a shared/unified space. To this end, we propose a unified representation model, Prix-LM, for multilingual KB construction and completion. We leverage two types of knowledge, monolingual triples and cross-lingual links, extracted from existing multilingual KBs, and tune a multilingual language encoder XLM-R via a causal language modeling objective. Prix-LM integrates useful multilingual and KB-based factual knowledge into a single model. Experiments on standard entity-related tasks, such as link prediction in multiple languages, cross-lingual entity linking and bilingual lexicon induction, demonstrate its effectiveness, with gains reported over strong task-specialised baselines.
Masked language models (MLMs) such as BERT have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach.
Recent pre-trained language models have shown promising capability to generate fluent and realistic natural text. However, generating multi-sentence text with global content planning has been a long-existing research question. The current controlled text generation models cannot directly address this issue, as they usually condition on single known control attribute. We propose a low-cost yet effective framework that explicitly models content plans and optimizes the joint distribution of the natural sequence and the content plans in a plug-and-play post-processing manner. We evaluate our model with extensive automatic metrics and human evaluations and show that it achieves the state-of-the-art performance on the recipe generation task on Recipe1M+ dataset.
We study the learning of a matching model for dialogue response selection. Motivated by the recent finding that models trained with random negative samples are not ideal in real-world scenarios, we propose a hierarchical curriculum learning framework that trains the matching model in an “easy-to-difficult” scheme. Our learning framework consists of two complementary curricula: (1) corpus-level curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model gradually increases its ability in finding the matching clues between the dialogue context and a response candidate. As for IC, it progressively strengthens the model’s ability in identifying the mismatching information between the dialogue context and a response candidate. Empirical studies on three benchmark datasets with three state-of-the-art matching models demonstrate that the proposed learning framework significantly improves the model performance across various evaluation metrics.
Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.
Recent work indicated that pretrained language models (PLMs) such as BERT and RoBERTa can be transformed into effective sentence and word encoders even via simple self-supervised techniques. Inspired by this line of work, in this paper we propose a fully unsupervised approach to improving word-in-context (WiC) representations in PLMs, achieved via a simple and efficient WiC-targeted fine-tuning procedure: MirrorWiC. The proposed method leverages only raw texts sampled from Wikipedia, assuming no sense-annotated data, and learns context-aware word representations within a standard contrastive learning setup. We experiment with a series of standard and comprehensive WiC benchmarks across multiple languages. Our proposed fully unsupervised MirrorWiC models obtain substantial gains over off-the-shelf PLMs across all monolingual, multilingual and cross-lingual setups. Moreover, on some standard WiC benchmarks, MirrorWiC is even on-par with supervised models fine-tuned with in-task data and sense labels.
Non-autoregressive generation (NAG) has recently attracted great attention due to its fast inference speed. However, the generation quality of existing NAG models still lags behind their autoregressive counterparts. In this work, we show that BERT can be employed as the backbone of a NAG model for a greatly improved performance. Additionally, we devise two mechanisms to alleviate the two common problems of vanilla NAG models: the inflexibility of prefixed output length and the conditional independence of individual token predictions. To further strengthen the speed advantage of the proposed model, we propose a new decoding strategy, ratio-first, for applications where the output lengths can be approximately estimated beforehand. For a comprehensive evaluation, we test the proposed model on three text generation tasks, including text summarization, sentence compression and machine translation. Experimental results show that our model significantly outperforms existing non-autoregressive baselines and achieves competitive performance with many strong autoregressive models. In addition, we also conduct extensive analysis experiments to reveal the effect of each proposed component.
Previous work has indicated that pretrained Masked Language Models (MLMs) are not effective as universal lexical and sentence encoders off-the-shelf, i.e., without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective lexical and sentence encoders even without any additional data, relying simply on self-supervision. We propose an extremely simple, fast, and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds with no access to additional external knowledge. Mirror-BERT relies on identical and slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during “identity fine-tuning”. We report huge gains over off-the-shelf MLMs with Mirror-BERT both in lexical-level and in sentence-level tasks, across different domains and different languages. Notably, in sentence similarity (STS) and question-answer entailment (QNLI) tasks, our self-supervised Mirror-BERT model even matches the performance of the Sentence-BERT models from prior work which rely on annotated task data. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple Mirror-BERT fine-tuning approach can yield effective universal lexical and sentence encoders.
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.
The design of widespread vision-and-language datasets and pre-trained encoders directly adopts, or draws inspiration from, the concepts and images of ImageNet. While one can hardly overestimate how much this benchmark contributed to progress in computer vision, it is mostly derived from lexical databases and image queries in English, resulting in source material with a North American or Western European bias. Therefore, we devise a new protocol to construct an ImageNet-style hierarchy representative of more languages and cultures. In particular, we let the selection of both concepts and images be entirely driven by native speakers, rather than scraping them automatically. Specifically, we focus on a typologically diverse set of languages, namely, Indonesian, Mandarin Chinese, Swahili, Tamil, and Turkish. On top of the concepts and images obtained through this new protocol, we create a multilingual dataset for Multicultural Reasoning over Vision and Language (MaRVL) by eliciting statements from native speaker annotators about pairs of images. The task consists of discriminating whether each grounded statement is true or false. We establish a series of baselines using state-of-the-art models and find that their cross-lingual transfer performance lags dramatically behind supervised performance in English. These results invite us to reassess the robustness and accuracy of current state-of-the-art models beyond a narrow domain, but also open up new exciting challenges for the development of truly multilingual and multicultural systems.
Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, we propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-to-text models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo and WebNLG. The results show that our model is able to control both the intra-sentence and inter-sentence structure of the generated output. Furthermore, empirical comparisons against previous state-of-the-art methods show that our model improves the generation quality as well as the output diversity as judged by human and automatic evaluations.
Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in real-world applications. To address this, we propose a new framework: Prototype-to-Generate (P2G), for table-to-text generation under the few-shot scenario. The proposed framework utilizes the retrieved prototypes, which are jointly selected by an IR system and a novel prototype selector to help the model bridging the structural gap between tables and texts. Experimental results on three benchmark datasets with three state-of-the-art models demonstrate that the proposed framework significantly improves the model performance across various evaluation metrics.
Cross-target generalization constitutes an important issue for news Stance Detection (SD). In this short paper, we investigate adversarial cross-genre SD, where knowledge from annotated user-generated data is leveraged to improve news SD on targets unseen during training. We implement a BERT-based adversarial network and show experimental performance improvements over a set of strong baselines. Given the abundance of user-generated data, which are considerably less expensive to retrieve and annotate than news articles, this constitutes a promising research direction.
Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.
It has been long known that sparsity is an effective inductive bias for learning efficient representation of data in vectors with fixed dimensionality, and it has been explored in many areas of representation learning. Of particular interest to this work is the investigation of the sparsity within the VAE framework which has been explored a lot in the image domain, but has been lacking even a basic level of exploration in NLP. Additionally, NLP is also lagging behind in terms of learning sparse representations of large units of text e.g., sentences. We use the VAEs that induce sparse latent representations of large units of text to address the aforementioned shortcomings. First, we move in this direction by measuring the success of unsupervised state-of-the-art (SOTA) and other strong VAE-based sparsification baselines for text and propose a hierarchical sparse VAE model to address the stability issue of SOTA. Then, we look at the implications of sparsity on text classification across 3 datasets, and highlight a link between performance of sparse latent representations on downstream tasks and its ability to encode task-related information.
Cross-target generalization is a known problem in stance detection (SD), where systems tend to perform poorly when exposed to targets unseen during training. Given that data annotation is expensive and time-consuming, finding ways to leverage abundant unlabeled in-domain data can offer great benefits. In this paper, we apply a weakly supervised framework to enhance cross-target generalization through synthetically annotated data. We focus on Twitter SD and show experimentally that integrating synthetic data is helpful for cross-target generalization, leading to significant improvements in performance, with gains in F1 scores ranging from +3.4 to +5.1.
Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence and latent knowledge of large pre-trained language models with structured knowledge graphs (KGs), yet few works have applied such methods to the SD task. In this work, we first perform stance-relevant knowledge probing on Transformers-based pre-trained models in a zero-shot setting, showing these models’ latent real-world knowledge about SD targets and their sensitivity to context. We then train and evaluate new knowledge-enriched stance detection models on two Twitter stance datasets, achieving state-of-the-art performance on both.
We present a new challenging stance detection dataset, called Will-They-Won’t-They (WT–WT), which contains 51,284 tweets in English, making it by far the largest available dataset of the type. All the annotations are carried out by experts; therefore, the dataset constitutes a high-quality and reliable benchmark for future research in stance detection. Our experiments with a wide range of recent state-of-the-art stance detection systems show that the dataset poses a strong challenge to existing models in this domain.
Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman’s language. Meanwhile, there is a growing need for applications that can understand the public’s voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.
We present a new challenging news dataset that targets both stance detection (SD) and fine-grained evidence retrieval (ER). With its 3,291 expert-annotated articles, the dataset constitutes a high-quality benchmark for future research in SD and multi-task learning. We provide a detailed description of the corpus collection methodology and carry out an extensive analysis on the sources of disagreement between annotators, observing a correlation between their disagreement and the diffusion of uncertainty around a target in the real world. Our experiments show that the dataset poses a strong challenge to recent state-of-the-art models. Notably, our dataset aligns with an existing Twitter SD dataset: their union thus addresses a key shortcoming of previous works, by providing the first dedicated resource to study multi-genre SD as well as the interplay of signals from social media and news sources in rumour verification.
Variational Autoencoders (VAEs) are known to suffer from learning uninformative latent representation of the input due to issues such as approximated posterior collapse, or entanglement of the latent space. We impose an explicit constraint on the Kullback-Leibler (KL) divergence term inside the VAE objective function. While the explicit constraint naturally avoids posterior collapse, we use it to further understand the significance of the KL term in controlling the information transmitted through the VAE channel. Within this framework, we explore different properties of the estimated posterior distribution, and highlight the trade-off between the amount of information encoded in a latent code during training, and the generative capacity of the model.
Word embeddings, in their different shapes and iterations, have changed the natural language processing research landscape in the last years. The biomedical text processing field is no stranger to this revolution; however, scholars in the field largely trained their embeddings on scientific documents only, even when working on user-generated data. In this paper we show how training embeddings from a corpus collected from user-generated text from medical forums heavily influences the performance on downstream tasks, outperforming embeddings trained both on general purpose data or on scientific papers when applied on user-generated content.
We present a novel method for mapping unrestricted text to knowledge graph entities by framing the task as a sequence-to-sequence problem. Specifically, given the encoded state of an input text, our decoder directly predicts paths in the knowledge graph, starting from the root and ending at the the target node following hypernym-hyponym relationships. In this way, and in contrast to other text-to-entity mapping systems, our model outputs hierarchically structured predictions that are fully interpretable in the context of the underlying ontology, in an end-to-end manner. We present a proof-of-concept experiment with encouraging results, comparable to those of state-of-the-art systems.
To extract the relationship between two entities in a sentence, two common approaches are (1) using their shortest dependency path (SDP) and (2) using an attention model to capture a context-based representation of the sentence. Each approach suffers from its own disadvantage of either missing or redundant information. In this work, we propose a novel model that combines the advantages of these two approaches. This is based on the basic information in the SDP enhanced with information selected by several attention mechanisms with kernel filters, namely RbSP (Richer-but-Smarter SDP). To exploit the representation behind the RbSP structure effectively, we develop a combined deep neural model with a LSTM network on word sequences and a CNN on RbSP. Experimental results on the SemEval-2010 dataset demonstrate improved performance over competitive baselines. The data and source code are available at https://github.com/catcd/RbSP.
Rare word representation has recently enjoyed a surge of interest, owing to the crucial role that effective handling of infrequent words can play in accurate semantic understanding. However, there is a paucity of reliable benchmarks for evaluation and comparison of these techniques. We show in this paper that the only existing benchmark (the Stanford Rare Word dataset) suffers from low-confidence annotations and limited vocabulary; hence, it does not constitute a solid comparison framework. In order to fill this evaluation gap, we propose Cambridge Rare word Dataset (Card-660), an expert-annotated word similarity dataset which provides a highly reliable, yet challenging, benchmark for rare word representation techniques. Through a set of experiments we show that even the best mainstream word embeddings, with millions of words in their vocabularies, are unable to achieve performances higher than 0.43 (Pearson correlation) on the dataset, compared to a human-level upperbound of 0.90. We release the dataset and the annotation materials at https://pilehvar.github.io/card-660/.
This paper addresses the problem of mapping natural language text to knowledge base entities. The mapping process is approached as a composition of a phrase or a sentence into a point in a multi-dimensional entity space obtained from a knowledge graph. The compositional model is an LSTM equipped with a dynamic disambiguation mechanism on the input word embeddings (a Multi-Sense LSTM), addressing polysemy issues. Further, the knowledge base space is prepared by collecting random walks from a graph enhanced with textual features, which act as a set of semantic bridges between text and knowledge base entities. The ideas of this work are demonstrated on large-scale text-to-entity mapping and entity classification tasks, with state of the art results.
Experimental performance on the task of relation classification has generally improved using deep neural network architectures. One major drawback of reported studies is that individual models have been evaluated on a very narrow range of datasets, raising questions about the adaptability of the architectures, while making comparisons between approaches difficult. In this work, we present a systematic large-scale analysis of neural relation classification architectures on six benchmark datasets with widely varying characteristics. We propose a novel multi-channel LSTM model combined with a CNN that takes advantage of all currently popular linguistic and architectural features. Our ‘Man for All Seasons’ approach achieves state-of-the-art performance on two datasets. More importantly, in our view, the model allowed us to obtain direct insights into the continued challenges faced by neural language models on this task.
The purpose of text geolocation is to associate geographic information contained in a document with a set (or sets) of coordinates, either implicitly by using linguistic features and/or explicitly by using geographic metadata combined with heuristics. We introduce a geocoder (location mention disambiguator) that achieves state-of-the-art (SOTA) results on three diverse datasets by exploiting the implicit lexical clues. Moreover, we propose a new method for systematic encoding of geographic metadata to generate two distinct views of the same text. To that end, we introduce the Map Vector (MapVec), a sparse representation obtained by plotting prior geographic probabilities, derived from population figures, on a World Map. We then integrate the implicit (language) and explicit (map) features to significantly improve a range of metrics. We also introduce an open-source dataset for geoparsing of news events covering global disease outbreaks and epidemics to help future evaluation in geoparsing.
In this paper, we propose to adapt the four-staged pipeline proposed by Zubiaga et al. (2018) for the Rumor Verification task to the problem of Fake News Detection. We show that the recently released FNC-1 corpus covers two of its steps, namely the Tracking and the Stance Detection task. We identify asymmetry in length in the input to be a key characteristic of the latter step, when adapted to the framework of Fake News Detection, and propose to handle it as a specific type of Cross-Level Stance Detection. Inspired by theories from the field of Journalism Studies, we implement and test two architectures to successfully model the internal structure of an article and its interactions with a claim.
We put forward an approach that exploits the knowledge encoded in lexical resources in order to induce representations for words that were not encountered frequently during training. Our approach provides an advantage over the past work in that it enables vocabulary expansion not only for morphological variations, but also for infrequent domain specific terms. We performed evaluations in different settings, showing that the technique can provide consistent improvements on multiple benchmarks across domains.
Named entities are frequently used in a metonymic manner. They serve as references to related entities such as people and organisations. Accurate identification and interpretation of metonymy can be directly beneficial to various NLP applications, such as Named Entity Recognition and Geographical Parsing. Until now, metonymy resolution (MR) methods mainly relied on parsers, taggers, dictionaries, external word lists and other handcrafted lexical resources. We show how a minimalist neural approach combined with a novel predicate window method can achieve competitive results on the SemEval 2007 task on Metonymy Resolution. Additionally, we contribute with a new Wikipedia-based MR dataset called RelocaR, which is tailored towards locations as well as improving previous deficiencies in annotation guidelines.
Lexical ambiguity can impede NLP systems from accurate understanding of semantics. Despite its potential benefits, the integration of sense-level information into NLP systems has remained understudied. By incorporating a novel disambiguation algorithm into a state-of-the-art classification model, we create a pipeline to integrate sense-level information into downstream NLP applications. We show that a simple disambiguation of the input text can lead to consistent performance improvement on multiple topic categorization and polarity detection datasets, particularly when the fine granularity of the underlying sense inventory is reduced and the document is sufficiently large. Our results also point to the need for sense representation research to focus more on in vivo evaluations which target the performance in downstream NLP applications rather than artificial benchmarks.
This paper introduces a new task on Multilingual and Cross-lingual SemanticThis paper introduces a new task on Multilingual and Cross-lingual Semantic Word Similarity which measures the semantic similarity of word pairs within and across five languages: English, Farsi, German, Italian and Spanish. High quality datasets were manually curated for the five languages with high inter-annotator agreements (consistently in the 0.9 ballpark). These were used for semi-automatic construction of ten cross-lingual datasets. 17 teams participated in the task, submitting 24 systems in subtask 1 and 14 systems in subtask 2. Results show that systems that combine statistical knowledge from text corpora, in the form of word embeddings, and external knowledge from lexical resources are best performers in both subtasks. More information can be found on the task website: http://alt.qcri.org/semeval2017/task2/
In this paper, we present our approach for named entity recognition in Twitter messages that we used in our participation in the Named Entity Recognition in Twitter shared task at the COLING 2016 Workshop on Noisy User-generated text (WNUT). The main challenge that we aim to tackle in our participation is the short, noisy and colloquial nature of tweets, which makes named entity recognition in Twitter message a challenging task. In particular, we investigate an approach for dealing with this problem by enabling bidirectional long short-term memory (LSTM) to automatically learn orthographic features without requiring feature engineering. In comparison with other systems participating in the shared task, our system achieved the most effective performance on both the ‘segmentation and categorisation’ and the ‘segmentation only’ sub-tasks.
End-to-end neural network models for named entity recognition (NER) have shown to achieve effective performances on general domain datasets (e.g. newswire), without requiring additional hand-crafted features. However, in biomedical domain, recent studies have shown that hand-engineered features (e.g. orthographic features) should be used to attain effective performance, due to the complexity of biomedical terminology (e.g. the use of acronyms and complex gene names). In this work, we propose a novel approach that allows a neural network model based on a long short-term memory (LSTM) to automatically learn orthographic features and incorporate them into a model for biomedical NER. Importantly, our bi-directional LSTM model learns and leverages orthographic features on an end-to-end basis. We evaluate our approach by comparing against existing neural network models for NER using three well-established biomedical datasets. Our experimental results show that the proposed approach consistently outperforms these strong baselines across all of the three datasets.
In this paper, we propose an annotation scheme which can be used not only for annotating coreference relations between linguistic expressions, but also those among linguistic expressions and images, in scientific texts such as biomedical articles. Images in biomedical domain often contain important information for analyses and diagnoses, and we consider that linking images to textual descriptions of their semantic contents in terms of coreference relations is useful for multimodal access to the information. We present our annotation scheme and the concept of a "coreference pool," which plays a central role in the scheme. We also introduce a support tool for text annotation named Open Ontology Forge which we have already developed, and additional functions for the software to cover image annotations (ImageOF) which is now being developed.