Nihal Nayak


2024

pdf bib
Does CLIP Bind Concepts? Probing Compositionality in Large Image Models
Martha Lewis | Nihal Nayak | Peilin Yu | Jack Merullo | Qinan Yu | Stephen Bach | Ellie Pavlick
Findings of the Association for Computational Linguistics: EACL 2024

Large-scale neural network models combining text and images have made incredible progress in recent years. However, it remains an open question to what extent such models encode compositional representations of the concepts over which they operate, such as correctly identifying ‘red cube’ by reasoning over the constituents ‘red’ and ‘cube’. In this work, we focus on the ability of a large pretrained vision and language model (CLIP) to encode compositional concepts and to bind variables in a structure-sensitive way (e.g., differentiating ‘cube behind sphere’ from ‘sphere behind cube’). To inspect the performance of CLIP, we compare several architectures from research on compositional distributional semantics models (CDSMs), a line of research that attempts to implement traditional compositional linguistic structures within embedding spaces. We benchmark them on three synthetic datasets – single-object, two-object, and relational – designed to test concept binding. We find that CLIP can compose concepts in a single-object setting, but in situations where concept binding is needed, performance drops dramatically. At the same time, CDSMs also perform poorly, with best performance at chance level.

pdf bib
Learning to Generate Instruction Tuning Datasets for Zero-Shot Task Adaptation
Nihal Nayak | Yiyang Nan | Avi Trost | Stephen Bach
Findings of the Association for Computational Linguistics ACL 2024

We introduce Bonito, an open-source model for conditional task generation that converts unannotated text into task-specific training datasets for instruction tuning. We aim to enable zero-shot task adaptation of large language models on users’ specialized, private data. We train Bonito by fine-tuning a pretrained large language model on a new large-scale dataset with 1.65M examples created by remixing existing instruction tuning datasets into meta-templates. The meta-templates for a dataset produce training examples where the input is the unannotated text and the task attribute and the output consists of the instruction and the response. We use Bonito to generate synthetic tasks for seven datasets from specialized domains with unannotated text across three task types—yes-no question answering, extractive question answering, and natural language inference—and adapt language models. We show that Bonito significantly improves the average performance of pretrained and instruction tuned models over the de facto self supervised baseline. For example, adapting Mistral-Instruct-v2 and instruction tuned variants of Mistral and Llama2 with Bonito improves the strong zero-shot performance by 22.1 F1 points whereas the next word prediction objective undoes some of the benefits of instruction tuning and reduces the average performance by 0.8 F1 points. We conduct additional experiments with Bonito to understand the effects of the domain, the size of the training set, and the choice of alternative synthetic task generators. Overall, we show that learning with synthetic instruction tuning datasets is an effective way to adapt language models to new domains. The model, dataset, and code are available at https://github.com/BatsResearch/bonito.