Nihan Cicekli


2024

pdf bib
Empathify at WASSA 2024 Empathy and Personality Shared Task: Contextualizing Empathy with a BERT-Based Context-Aware Approach for Empathy Detection
Arda Numanoğlu | Süleyman Ateş | Nihan Cicekli | Dilek Küçük
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Empathy detection from textual data is a complex task that requires an understanding of both the content and context of the text. This study presents a BERT-based context-aware approach to enhance empathy detection in conversations and essays. We participated in the WASSA 2024 Shared Task, focusing on two tracks: empathy and emotion prediction in conversations (CONV-turn) and empathy and distress prediction in essays (EMP). Our approach leverages contextual information by incorporating related articles and emotional characteristics as additional inputs, using BERT-based Siamese (parallel) architecture. Our experiments demonstrated that using article summaries as context significantly improves performance, with the parallel BERT approach outperforming the traditional method of concatenating inputs with the ‘[SEP]‘ token. These findings highlight the importance of context-awareness in empathy detection and pave the way for future improvements in the sensitivity and accuracy of such systems.