Task-oriented dialog (TOD) systems often need to formulate knowledge base (KB) queries corresponding to the user intent and use the query results to generate system responses. Existing approaches require dialog datasets to explicitly annotate these KB queries—these annotations can be time consuming, and expensive. In response, we define the novel problems of predicting the KB query and training the dialog agent, without explicit KB query annotation. For query prediction, we propose a reinforcement learning (RL) baseline, which rewards the generation of those queries whose KB results cover the entities mentioned in subsequent dialog. Further analysis reveals that correlation among query attributes in KB can significantly confuse memory augmented policy optimization (MAPO), an existing state of the art RL agent. To address this, we improve the MAPO baseline with simple but important modifications suited to our task. To train the full TOD system for our setting, we propose a pipelined approach: it independently predicts when to make a KB query (query position predictor), then predicts a KB query at the predicted position (query predictor), and uses the results of predicted query in subsequent dialog (next response predictor). Overall, our work proposes first solutions to our novel problem, and our analysis highlights the research challenges in training TOD systems without query annotation.
The Neural Covidex is a search engine that exploits the latest neural ranking architectures to provide information access to the COVID-19 Open Research Dataset (CORD-19) curated by the Allen Institute for AI. It exists as part of a suite of tools we have developed to help domain experts tackle the ongoing global pandemic. We hope that improved information access capabilities to the scientific literature can inform evidence-based decision making and insight generation.
We present Covidex, a search engine that exploits the latest neural ranking models to provide information access to the COVID-19 Open Research Dataset curated by the Allen Institute for AI. Our system has been online and serving users since late March 2020. The Covidex is the user application component of our three-pronged strategy to develop technologies for helping domain experts tackle the ongoing global pandemic. In addition, we provide robust and easy-to-use keyword search infrastructure that exploits mature fusion-based methods as well as standalone neural ranking models that can be incorporated into other applications. These techniques have been evaluated in the multi-round TREC-COVID challenge: Our infrastructure and baselines have been adopted by many participants, including some of the best systems. In round 3, we submitted the highest-scoring run that took advantage of previous training data and the second-highest fully automatic run. In rounds 4 and 5, we submitted the highest-scoring fully automatic runs.
The Knowledge Base (KB) used for real-world applications, such as booking a movie or restaurant reservation, keeps changing over time. End-to-end neural networks trained for these task-oriented dialogs are expected to be immune to any changes in the KB. However, existing approaches breakdown when asked to handle such changes. We propose an encoder-decoder architecture (BoSsNet) with a novel Bag-of-Sequences (BoSs) memory, which facilitates the disentangled learning of the response’s language model and its knowledge incorporation. Consequently, the KB can be modified with new knowledge without a drop in interpretability. We find that BoSsNeT outperforms state-of-the-art models, with considerable improvements (>10%) on bAbI OOV test sets and other human-human datasets. We also systematically modify existing datasets to measure disentanglement and show BoSsNeT to be robust to KB modifications.