Nikhil Rasiwasia


pdf bib
Distantly Supervised Transformers For E-Commerce Product QA
Happy Mittal | Aniket Chakrabarti | Belhassen Bayar | Animesh Anant Sharma | Nikhil Rasiwasia
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a practical instant question answering (QA) system on product pages of e-commerce services, where for each user query, relevant community question answer (CQA) pairs are retrieved. User queries and CQA pairs differ significantly in language characteristics making relevance learning difficult. Our proposed transformer-based model learns a robust relevance function by jointly learning unified syntactic and semantic representations without the need for human labeled data. This is achieved by distantly supervising our model by distilling from predictions of a syntactic matching system on user queries and simultaneously training with CQA pairs. Training with CQA pairs helps our model learning semantic QA relevance and distant supervision enables learning of syntactic features as well as the nuances of user querying language. Additionally, our model encodes queries and candidate responses independently allowing offline candidate embedding generation thereby minimizing the need for real-time transformer model execution. Consequently, our framework is able to scale to large e-commerce QA traffic. Extensive evaluation on user queries shows that our framework significantly outperforms both syntactic and semantic baselines in offline as well as large scale online A/B setups of a popular e-commerce service.

pdf bib
LATEX-Numeric: Language Agnostic Text Attribute Extraction for Numeric Attributes
Kartik Mehta | Ioana Oprea | Nikhil Rasiwasia
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

In this paper, we present LATEX-Numeric - a high-precision fully-automated scalable framework for extracting E-commerce numeric attributes from unstructured product text like product description. Most of the past work on attribute extraction is not scalable as they rely on manually curated training data, either with or without use of active learning. We rely on distant supervision for training data generation, removing dependency on manual labels. One issue with distant supervision is that it leads to incomplete training annotation due to missing attribute values while matching. We propose a multi-task learning architecture to deal with missing labels in the training data, leading to F1 improvement of 9.2% for numeric attributes over state-of-the-art single-task architecture. While multi-task architecture benefits both numeric and non-numeric attributes, we present automated techniques to further improve the numeric attributes extraction models. Numeric attributes require a list of units (or aliases) for better matching with distant supervision. We propose an automated algorithm for alias creation using unstructured text and attribute values, leading to a 20.2% F1 improvement. Extensive experiments on real world datasets for 20 numeric attributes across 5 product categories and 3 English marketplaces show that LATEX-numeric achieves a high F1-score, without any manual intervention, making it suitable for practical applications. Finally we show that the improvements are language-agnostic and LATEX-Numeric achieves 13.9% F1 improvement for 3 non-English languages.

pdf bib
Scalable Approach for Normalizing E-commerce Text Attributes (SANTA)
Ravi Shankar Mishra | Kartik Mehta | Nikhil Rasiwasia
Proceedings of the 4th Workshop on e-Commerce and NLP

In this paper, we present SANTA, a scalable framework to automatically normalize E-commerce attribute values (e.g. “Win 10 Pro”) to a fixed set of pre-defined canonical values (e.g. “Windows 10”). Earlier works on attribute normalization focused on fuzzy string matching (also referred as syntactic matching in this paper). In this work, we first perform an extensive study of nine syntactic matching algorithms and establish that ‘cosine’ similarity leads to best results, showing 2.7% improvement over commonly used Jaccard index. Next, we show that string similarity alone is not sufficient for attribute normalization as many surface forms require going beyond syntactic matching (e.g. “720p” and “HD” are synonyms). While semantic techniques like unsupervised embeddings (e.g. word2vec/fastText) have shown good results in word similarity tasks, we observed that they perform poorly to distinguish between close canonical forms, as these close forms often occur in similar contexts. We propose to learn token embeddings using a twin network with triplet loss. We propose an embedding learning task leveraging raw attribute values and product titles to learn these embeddings in a self-supervised fashion. We show that providing supervision using our proposed task improves over both syntactic and unsupervised embeddings based techniques for attribute normalization. Experiments on a real-world dataset of 50 attributes show that the embeddings trained using our proposed approach obtain 2.3% improvement over best string similarity and 19.3% improvement over best unsupervised embeddings.


pdf bib
Improving Answer Selection and Answer Triggering using Hard Negatives
Sawan Kumar | Shweta Garg | Kartik Mehta | Nikhil Rasiwasia
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper, we establish the effectiveness of using hard negatives, coupled with a siamese network and a suitable loss function, for the tasks of answer selection and answer triggering. We show that the choice of sampling strategy is key for achieving improved performance on these tasks. Evaluating on recent answer selection datasets - InsuranceQA, SelQA, and an internal QA dataset, we show that using hard negatives with relatively simple model architectures (bag of words and LSTM-CNN) drives significant performance gains. On InsuranceQA, this strategy alone improves over previously reported results by a minimum of 1.6 points in P@1. Using hard negatives with a Transformer encoder provides a further improvement of 2.3 points. Further, we propose to use quadruplet loss for answer triggering, with the aim of producing globally meaningful similarity scores. We show that quadruplet loss function coupled with the selection of hard negatives enables bag-of-words models to improve F1 score by 2.3 points over previous baselines, on SelQA answer triggering dataset. Our results provide key insights into answer selection and answer triggering tasks.