Dense retrieval has been shown to be effective for Open Domain Question Answering, surpassing sparse retrieval methods like BM25. One such model, REALM, (Guu et al., 2020) is an end-to-end dense retrieval system that uses MLM based pretraining for improved downstream QA performance. However, the current REALM setup uses limited resources and is not comparable in scale to more recent systems, contributing to its lower performance. Additionally, it relies on noisy supervision for retrieval during fine-tuning. We propose REALM++, where we improve upon the training and inference setups and introduce better supervision signal for improving performance, without any architectural changes. REALM++ achieves ~5.5% absolute accuracy gains over the baseline while being faster to train. It also matches the performance of large models which have 3x more parameters demonstrating the efficiency of our setup.
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two approaches for generating large parallel datasets for GEC using publicly available Wikipedia data. The first method extracts source-target pairs from Wikipedia edit histories with minimal filtration heuristics while the second method introduces noise into Wikipedia sentences via round-trip translation through bridge languages. Both strategies yield similar sized parallel corpora containing around 4B tokens. We employ an iterative decoding strategy that is tailored to the loosely supervised nature of our constructed corpora. We demonstrate that neural GEC models trained using either type of corpora give similar performance. Fine-tuning these models on the Lang-8 corpus and ensembling allows us to surpass the state of the art on both the CoNLL ‘14 benchmark and the JFLEG task. We present systematic analysis that compares the two approaches to data generation and highlights the effectiveness of ensembling.
The past year has witnessed rapid advances in sequence-to-sequence (seq2seq) modeling for Machine Translation (MT). The classic RNN-based approaches to MT were first out-performed by the convolutional seq2seq model, which was then out-performed by the more recent Transformer model. Each of these new approaches consists of a fundamental architecture accompanied by a set of modeling and training techniques that are in principle applicable to other seq2seq architectures. In this paper, we tease apart the new architectures and their accompanying techniques in two ways. First, we identify several key modeling and training techniques, and apply them to the RNN architecture, yielding a new RNMT+ model that outperforms all of the three fundamental architectures on the benchmark WMT’14 English to French and English to German tasks. Second, we analyze the properties of each fundamental seq2seq architecture and devise new hybrid architectures intended to combine their strengths. Our hybrid models obtain further improvements, outperforming the RNMT+ model on both benchmark datasets.