Nikolai Vogler


2023

pdf bib
Simple Temporal Adaptation to Changing Label Sets: Hashtag Prediction via Dense KNN
Niloofar Mireshghallah | Nikolai Vogler | Junxian He | Omar Florez | Ahmed El-Kishky | Taylor Berg-Kirkpatrick
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

User-generated social media data is constantly changing as new trends influence online discussion and personal information is deleted due to privacy concerns. However, traditional NLP models rely on fixed training datasets, which means they are unable to adapt to temporal change—both test distribution shift and deleted training data—without frequent, costly re-training. In this paper, we study temporal adaptation through the task of longitudinal hashtag prediction and propose a non-parametric dense retrieval technique, which does not require re-training, as a simple but effective solution. In experiments on a newly collected, publicly available, year-long Twitter dataset exhibiting temporal distribution shift, our method improves by 64% over the best static parametric baseline while avoiding costly gradient-based re-training. Our approach is also particularly well-suited to dynamically deleted user data in line with data privacy laws, with negligible computational cost/performance loss.

2022

pdf bib
Lacuna Reconstruction: Self-Supervised Pre-Training for Low-Resource Historical Document Transcription
Nikolai Vogler | Jonathan Allen | Matthew Miller | Taylor Berg-Kirkpatrick
Findings of the Association for Computational Linguistics: NAACL 2022

We present a self-supervised pre-training approach for learning rich visual language representations for both handwritten and printed historical document transcription. After supervised fine-tuning of our pre-trained encoder representations for low-resource document transcription on two languages, (1) a heterogeneous set of handwritten Islamicate manuscript images and (2) early modern English printed documents, we show a meaningful improvement in recognition accuracy over the same supervised model trained from scratch with as few as 30 line image transcriptions for training. Our masked language model-style pre-training strategy, where the model is trained to be able to identify the true masked visual representation from distractors sampled from within the same line, encourages learning robust contextualized language representations invariant to scribal writing style and printing noise present across documents.

2019

pdf bib
Lost in Interpretation: Predicting Untranslated Terminology in Simultaneous Interpretation
Nikolai Vogler | Craig Stewart | Graham Neubig
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Simultaneous interpretation, the translation of speech from one language to another in real-time, is an inherently difficult and strenuous task. One of the greatest challenges faced by interpreters is the accurate translation of difficult terminology like proper names, numbers, or other entities. Intelligent computer-assisted interpreting (CAI) tools that could analyze the spoken word and detect terms likely to be untranslated by an interpreter could reduce translation error and improve interpreter performance. In this paper, we propose a task of predicting which terminology simultaneous interpreters will leave untranslated, and examine methods that perform this task using supervised sequence taggers. We describe a number of task-specific features explicitly designed to indicate when an interpreter may struggle with translating a word. Experimental results on a newly-annotated version of the NAIST Simultaneous Translation Corpus (Shimizu et al., 2014) indicate the promise of our proposed method.

2018

pdf bib
Automatic Estimation of Simultaneous Interpreter Performance
Craig Stewart | Nikolai Vogler | Junjie Hu | Jordan Boyd-Graber | Graham Neubig
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Simultaneous interpretation, translation of the spoken word in real-time, is both highly challenging and physically demanding. Methods to predict interpreter confidence and the adequacy of the interpreted message have a number of potential applications, such as in computer-assisted interpretation interfaces or pedagogical tools. We propose the task of predicting simultaneous interpreter performance by building on existing methodology for quality estimation (QE) of machine translation output. In experiments over five settings in three language pairs, we extend a QE pipeline to estimate interpreter performance (as approximated by the METEOR evaluation metric) and propose novel features reflecting interpretation strategy and evaluation measures that further improve prediction accuracy.