Nikolaus Kriegeskorte


pdf bib
Semantic Data Set Construction from Human Clustering and Spatial Arrangement
Olga Majewska | Diana McCarthy | Jasper J. F. van den Bosch | Nikolaus Kriegeskorte | Ivan Vulić | Anna Korhonen
Computational Linguistics, Volume 47, Issue 1 - March 2021

Abstract Research into representation learning models of lexical semantics usually utilizes some form of intrinsic evaluation to ensure that the learned representations reflect human semantic judgments. Lexical semantic similarity estimation is a widely used evaluation method, but efforts have typically focused on pairwise judgments of words in isolation, or are limited to specific contexts and lexical stimuli. There are limitations with these approaches that either do not provide any context for judgments, and thereby ignore ambiguity, or provide very specific sentential contexts that cannot then be used to generate a larger lexical resource. Furthermore, similarity between more than two items is not considered. We provide a full description and analysis of our recently proposed methodology for large-scale data set construction that produces a semantic classification of a large sample of verbs in the first phase, as well as multi-way similarity judgments made within the resultant semantic classes in the second phase. The methodology uses a spatial multi-arrangement approach proposed in the field of cognitive neuroscience for capturing multi-way similarity judgments of visual stimuli. We have adapted this method to handle polysemous linguistic stimuli and much larger samples than previous work. We specifically target verbs, but the method can equally be applied to other parts of speech. We perform cluster analysis on the data from the first phase and demonstrate how this might be useful in the construction of a comprehensive verb resource. We also analyze the semantic information captured by the second phase and discuss the potential of the spatially induced similarity judgments to better reflect human notions of word similarity. We demonstrate how the resultant data set can be used for fine-grained analyses and evaluation of representation learning models on the intrinsic tasks of semantic clustering and semantic similarity. In particular, we find that stronger static word embedding methods still outperform lexical representations emerging from more recent pre-training methods, both on word-level similarity and clustering. Moreover, thanks to the data set’s vast coverage, we are able to compare the benefits of specializing vector representations for a particular type of external knowledge by evaluating FrameNet- and VerbNet-retrofitted models on specific semantic domains such as “Heat” or “Motion.”


pdf bib
Spatial Multi-Arrangement for Clustering and Multi-way Similarity Dataset Construction
Olga Majewska | Diana McCarthy | Jasper van den Bosch | Nikolaus Kriegeskorte | Ivan Vulić | Anna Korhonen
Proceedings of the 12th Language Resources and Evaluation Conference

We present a novel methodology for fast bottom-up creation of large-scale semantic similarity resources to support development and evaluation of NLP systems. Our work targets verb similarity, but the methodology is equally applicable to other parts of speech. Our approach circumvents the bottleneck of slow and expensive manual development of lexical resources by leveraging semantic intuitions of native speakers and adapting a spatial multi-arrangement approach from cognitive neuroscience, used before only with visual stimuli, to lexical stimuli. Our approach critically obtains judgments of word similarity in the context of a set of related words, rather than of word pairs in isolation. We also handle lexical ambiguity as a natural consequence of a two-phase process where verbs are placed in broad semantic classes prior to the fine-grained spatial similarity judgments. Our proposed design produces a large-scale verb resource comprising 17 relatedness-based classes and a verb similarity dataset containing similarity scores for 29,721 unique verb pairs and 825 target verbs, which we release with this paper.