Nikolay Babakov


pdf bib
Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company’s Reputation
Nikolay Babakov | Varvara Logacheva | Olga Kozlova | Nikita Semenov | Alexander Panchenko
Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing

Not all topics are equally “flammable” in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.