Nils Rethmeier


2023

pdf bib
VendorLink: An NLP approach for Identifying & Linking Vendor Migrants & Potential Aliases on Darknet Markets
Vageesh Saxena | Nils Rethmeier | Gijs van Dijck | Gerasimos Spanakis
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The anonymity on the Darknet allows vendors to stay undetected by using multiple vendor aliases or frequently migrating between markets. Consequently, illegal markets and their connections are challenging to uncover on the Darknet. To identify relationships between illegal markets and their vendors, we propose VendorLink, an NLP-based approach that examines writing patterns to verify, identify, and link unique vendor accounts across text advertisements (ads) on seven public Darknet markets. In contrast to existing literature, VendorLink utilizes the strength of supervised pre-training to perform closed-set vendor verification, open-set vendor identification, and low-resource market adaption tasks. Through VendorLink, we uncover (i) 15 migrants and 71 potential aliases in the Alphabay-Dreams-Silk dataset, (ii) 17 migrants and 3 potential aliases in the Valhalla-Berlusconi dataset, and (iii) 75 migrants and 10 potential aliases in the Traderoute-Agora dataset. Altogether, our approach can help Law Enforcement Agencies (LEA) make more informed decisions by verifying and identifying migrating vendors and their potential aliases on existing and Low-Resource (LR) emerging Darknet markets.

2022

pdf bib
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Malte Ostendorff | Nils Rethmeier | Isabelle Augenstein | Bela Gipp | Georg Rehm
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) language models sample-efficiently and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.

2019

pdf bib
MoRTy: Unsupervised Learning of Task-specialized Word Embeddings by Autoencoding
Nils Rethmeier | Barbara Plank
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Word embeddings have undoubtedly revolutionized NLP. However, pretrained embeddings do not always work for a specific task (or set of tasks), particularly in limited resource setups. We introduce a simple yet effective, self-supervised post-processing method that constructs task-specialized word representations by picking from a menu of reconstructing transformations to yield improved end-task performance (MORTY). The method is complementary to recent state-of-the-art approaches to inductive transfer via fine-tuning, and forgoes costly model architectures and annotation. We evaluate MORTY on a broad range of setups, including different word embedding methods, corpus sizes and end-task semantics. Finally, we provide a surprisingly simple recipe to obtain specialized embeddings that better fit end-tasks.

2018

pdf bib
Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs
Nils Rethmeier | Marc Hübner | Leonhard Hennig
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such rapidly evolving controversy could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords – to find that the models learn plausible controversy features using only incidentally supervised signals.

2017

pdf bib
Common Round: Application of Language Technologies to Large-Scale Web Debates
Hans Uszkoreit | Aleksandra Gabryszak | Leonhard Hennig | Jörg Steffen | Renlong Ai | Stephan Busemann | Jon Dehdari | Josef van Genabith | Georg Heigold | Nils Rethmeier | Raphael Rubino | Sven Schmeier | Philippe Thomas | He Wang | Feiyu Xu
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

Web debates play an important role in enabling broad participation of constituencies in social, political and economic decision-taking. However, it is challenging to organize, structure, and navigate a vast number of diverse argumentations and comments collected from many participants over a long time period. In this paper we demonstrate Common Round, a next generation platform for large-scale web debates, which provides functions for eliciting the semantic content and structures from the contributions of participants. In particular, Common Round applies language technologies for the extraction of semantic essence from textual input, aggregation of the formulated opinions and arguments. The platform also provides a cross-lingual access to debates using machine translation.