Ning Shi


2023

pdf bib
From Adversarial Arms Race to Model-centric Evaluation: Motivating a Unified Automatic Robustness Evaluation Framework
Yangyi Chen | Hongcheng Gao | Ganqu Cui | Lifan Yuan | Dehan Kong | Hanlu Wu | Ning Shi | Bo Yuan | Longtao Huang | Hui Xue | Zhiyuan Liu | Maosong Sun | Heng Ji
Findings of the Association for Computational Linguistics: ACL 2023

Textual adversarial attacks can discover models’ weaknesses by adding semantic-preserved but misleading perturbations to the inputs. The long-lasting adversarial attack-and-defense arms race in Natural Language Processing (NLP) is algorithm-centric, providing valuable techniques for automatic robustness evaluation. However, the existing practice of robustness evaluation may exhibit issues of incomprehensive evaluation, impractical evaluation protocol, and invalid adversarial samples. In this paper, we aim to set up a unified automatic robustness evaluation framework, shifting towards model-centric evaluation to further exploit the advantages of adversarial attacks. To address the above challenges, we first determine robustness evaluation dimensions based on model capabilities and specify the reasonable algorithm to generate adversarial samples for each dimension. Then we establish the evaluation protocol, including evaluation settings and metrics, under realistic demands. Finally, we use the perturbation degree of adversarial samples to control the sample validity. We implement a toolkit RobTest that realizes our automatic robustness evaluation framework. In our experiments, we conduct a robustness evaluation of RoBERTa models to demonstrate the effectiveness of our evaluation framework, and further show the rationality of each component in the framework.

pdf bib
UAlberta at SemEval-2023 Task 1: Context Augmentation and Translation for Multilingual Visual Word Sense Disambiguation
Michael Ogezi | Bradley Hauer | Talgat Omarov | Ning Shi | Grzegorz Kondrak
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We describe the systems of the University of Alberta team for the SemEval-2023 Visual Word Sense Disambiguation (V-WSD) Task. We present a novel algorithm that leverages glosses retrieved from BabelNet, in combination with text and image encoders. Furthermore, we compare language-specific encoders against the application of English encoders to translated texts. As the contexts given in the task datasets are extremely short, we also experiment with augmenting these contexts with descriptions generated by a language model. This yields substantial improvements in accuracy. We describe and evaluate additional V-WSD methods which use image generation and text-conditioned image segmentation. Some of our experimental results exceed those of our official submissions on the test set. Our code is publicly available at https://github.com/UAlberta-NLP/v-wsd.

pdf bib
Don’t Trust ChatGPT when your Question is not in English: A Study of Multilingual Abilities and Types of LLMs
Xiang Zhang | Senyu Li | Bradley Hauer | Ning Shi | Grzegorz Kondrak
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have demonstrated exceptional natural language understanding abilities, and have excelled in a variety of natural language processing (NLP) tasks. Despite the fact that most LLMs are trained predominantly on English, multiple studies have demonstrated their capabilities in a variety of languages. However, fundamental questions persist regarding how LLMs acquire their multilingual abilities and how performance varies across different languages. These inquiries are crucial for the study of LLMs since users and researchers often come from diverse language backgrounds, potentially influencing how they use LLMs and interpret their output. In this work, we propose a systematic way of qualitatively and quantitatively evaluating the multilingual capabilities of LLMs. We investigate the phenomenon of cross-language generalization in LLMs, wherein limited multilingual training data leads to advanced multilingual capabilities. To accomplish this, we employ a novel prompt back-translation method. The results demonstrate that LLMs, such as GPT, can effectively transfer learned knowledge across different languages, yielding relatively consistent results in translation-equivariant tasks, in which the correct output does not depend on the language of the input. However, LLMs struggle to provide accurate results in translation-variant tasks, which lack this property, requiring careful user judgment to evaluate the answers.

pdf bib
Bridging the Gap Between BabelNet and HowNet: Unsupervised Sense Alignment and Sememe Prediction
Xiang Zhang | Ning Shi | Bradley Hauer | Grzegorz Kondrak
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

As the minimum semantic units of natural languages, sememes can provide precise representations of concepts. Despite the widespread utilization of lexical resources for semantic tasks, use of sememes is limited by a lack of available sememe knowledge bases. Recent efforts have been made to connect BabelNet with HowNet by automating sememe prediction. However, these methods depend on large manually annotated datasets. We propose to use sense alignment via a novel unsupervised and explainable method. Our method consists of four stages, each relaxing predefined constraints until a complete alignment of BabelNet synsets to HowNet senses is achieved. Experimental results demonstrate the superiority of our unsupervised method over previous supervised ones by an improvement of 12% overall F1 score, setting a new state of the art. Our work is grounded in an interpretable propagation of sememe information between lexical resources, and may benefit downstream applications which can incorporate sememe information.

2022

pdf bib
Text Editing as Imitation Game
Ning Shi | Bin Tang | Bo Yuan | Longtao Huang | Yewen Pu | Jie Fu | Zhouhan Lin
Findings of the Association for Computational Linguistics: EMNLP 2022

Text editing, such as grammatical error correction, arises naturally from imperfect textual data. Recent works frame text editing as a multi-round sequence tagging task, where operations – such as insertion and substitution – are represented as a sequence of tags. While achieving good results, this encoding is limited in flexibility as all actions are bound to token-level tags. In this work, we reformulate text editing as an imitation game using behavioral cloning. Specifically, we convert conventional sequence-to-sequence data into state-to-action demonstrations, where the action space can be as flexible as needed. Instead of generating the actions one at a time, we introduce a dual decoders structure to parallel the decoding while retaining the dependencies between action tokens, coupled with trajectory augmentation to alleviate the distribution shift that imitation learning often suffers. In experiments on a suite of Arithmetic Equation benchmarks, our model consistently outperforms the autoregressive baselines in terms of performance, efficiency, and robustness. We hope our findings will shed light on future studies in reinforcement learning applying sequence-level action generation to natural language processing.

pdf bib
RoChBert: Towards Robust BERT Fine-tuning for Chinese
Zihan Zhang | Jinfeng Li | Ning Shi | Bo Yuan | Xiangyu Liu | Rong Zhang | Hui Xue | Donghong Sun | Chao Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Despite of the superb performance on a wide range of tasks, pre-trained language models (e.g., BERT) have been proved vulnerable to adversarial texts. In this paper, we present RoChBERT, a framework to build more Robust BERT-based models by utilizing a more comprehensive adversarial graph to fuse Chinese phonetic and glyph features into pre-trained representations during fine-tuning. Inspired by curriculum learning, we further propose to augment the training dataset with adversarial texts in combination with intermediate samples. Extensive experiments demonstrate that RoChBERT outperforms previous methods in significant ways: (i) robust – RoChBERT greatly improves the model robustness without sacrificing accuracy on benign texts. Specifically, the defense lowers the success rates of unlimited and limited attacks by 59.43% and 39.33% respectively, while remaining accuracy of 93.30%; (ii) flexible – RoChBERT can easily extend to various language models to solve different downstream tasks with excellent performance; and (iii) efficient – RoChBERT can be directly applied to the fine-tuning stage without pre-training language model from scratch, and the proposed data augmentation method is also low-cost.

pdf bib
Revisit Systematic Generalization via Meaningful Learning
Ning Shi | Boxin Wang | Wei Wang | Xiangyu Liu | Zhouhan Lin
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Humans can systematically generalize to novel compositions of existing concepts. Recent studies argue that neural networks appear inherently ineffective in such cognitive capacity, leading to a pessimistic view and a lack of attention to optimistic results. We revisit this controversial topic from the perspective of meaningful learning, an exceptional capability of humans to learn novel concepts by connecting them with known ones. We reassess the compositional skills of sequence-to-sequence models conditioned on the semantic links between new and old concepts. Our observations suggest that models can successfully one-shot generalize to novel concepts and compositions through semantic linking, either inductively or deductively. We demonstrate that prior knowledge plays a key role as well. In addition to synthetic tests, we further conduct proof-of-concept experiments in machine translation and semantic parsing, showing the benefits of meaningful learning in applications. We hope our positive findings will encourage excavating modern neural networks’ potential in systematic generalization through more advanced learning schemes.

2021

pdf bib
Counterfactual Adversarial Learning with Representation Interpolation
Wei Wang | Boxin Wang | Ning Shi | Jinfeng Li | Bingyu Zhu | Xiangyu Liu | Rong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Deep learning models exhibit a preference for statistical fitting over logical reasoning. Spurious correlations might be memorized when there exists statistical bias in training data, which severely limits the model performance especially in small data scenarios. In this work, we introduce Counterfactual Adversarial Training framework (CAT) to tackle the problem from a causality perspective. Particularly, for a specific sample, CAT first generates a counterfactual representation through latent space interpolation in an adversarial manner, and then performs Counterfactual Risk Minimization (CRM) on each original-counterfactual pair to adjust sample-wise loss weight dynamically, which encourages the model to explore the true causal effect. Extensive experiments demonstrate that CAT achieves substantial performance improvement over SOTA across different downstream tasks, including sentence classification, natural language inference and question answering.

2020

pdf bib
Recurrent Inference in Text Editing
Ning Shi | Ziheng Zeng | Haotian Zhang | Yichen Gong
Findings of the Association for Computational Linguistics: EMNLP 2020

In neural text editing, prevalent sequence-to-sequence based approaches directly map the unedited text either to the edited text or the editing operations, in which the performance is degraded by the limited source text encoding and long, varying decoding steps. To address this problem, we propose a new inference method, Recurrence, that iteratively performs editing actions, significantly narrowing the problem space. In each iteration, encoding the partially edited text, Recurrence decodes the latent representation, generates an action of short, fixed-length, and applies the action to complete a single edit. For a comprehensive comparison, we introduce three types of text editing tasks: Arithmetic Operators Restoration (AOR), Arithmetic Equation Simplification (AES), Arithmetic Equation Correction (AEC). Extensive experiments on these tasks with varying difficulties demonstrate that Recurrence achieves improvements over conventional inference methods.