Nir Ratner
2024
Generating Benchmarks for Factuality Evaluation of Language Models
Dor Muhlgay
|
Ori Ram
|
Inbal Magar
|
Yoav Levine
|
Nir Ratner
|
Yonatan Belinkov
|
Omri Abend
|
Kevin Leyton-Brown
|
Amnon Shashua
|
Yoav Shoham
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Before deploying a language model (LM) within a given domain, it is important to measure its tendency to generate factually incorrect information in that domain. Existing methods for factuality evaluation of LLM generation focus on facts sampled from the LM itself, and thus do not control the set of evaluated facts and might under-represent domain specific or rare facts. We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality. FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM’s propensity to generate true facts from the corpus vs. similar but incorrect statements. We use our framework to create three benchmarks: Wiki-FACTOR, News-FACTOR and Expert-FACTOR. We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score and perplexity do not always agree on model ranking; (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation, as measured by human annotators.
2023
Parallel Context Windows for Large Language Models
Nir Ratner
|
Yoav Levine
|
Yonatan Belinkov
|
Ori Ram
|
Inbal Magar
|
Omri Abend
|
Ehud Karpas
|
Amnon Shashua
|
Kevin Leyton-Brown
|
Yoav Shoham
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
When applied to processing long text, Large Language Models (LLMs) are limited by their context window. Existing efforts to address this limitation involve training specialized architectures, and cannot be easily applied to off- the-shelf LLMs. We present Parallel Context Windows (PCW), a method that alleviates the context window restriction for any off-the-shelf LLM without further training. The key to the approach is to carve a long context into chunks (“windows”), restrict the attention mechanism to apply only within each window, and re-use the positional embeddings across the windows. Our main results test the PCW approach on in-context learning with models that range in size between 750 million and 178 billion parameters, and show substantial improvements for tasks with diverse input and output spaces. We show additional benefits in other settings where long context windows may be beneficial: multi-hop questions and retrieval-augmented question answering with multiple retrieved documents. Our results highlight Parallel Context Windows as a promising method for applying off-the-shelf LLMs in a range of settings that require long text sequences. We make our code publicly available at https://github.com/ai21labs/parallel-context-windows.
Search
Fix data
Co-authors
- Omri Abend 2
- Yonatan Belinkov 2
- Yoav Levine 2
- Kevin Leyton-Brown 2
- Inbal Magar 2
- show all...