Niraj Jha
2024
DynaMo: Accelerating Language Model Inference with Dynamic Multi-Token Sampling
Shikhar Tuli
|
Chi-Heng Lin
|
Yen-Chang Hsu
|
Niraj Jha
|
Yilin Shen
|
Hongxia Jin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Traditional language models operate autoregressively, i.e., they predict one token at a time. Rapid explosion in model sizes has resulted in high inference times. In this work, we propose DynaMo, a suite of multi-token prediction language models that reduce net inference times. Our models *dynamically* predict multiple tokens based on their confidence in the predicted joint probability distribution. We propose a lightweighttechnique to train these models, leveraging the weights of traditional autoregressive counterparts. Moreover, we propose novel ways to enhance the estimated joint probability to improve text generation quality, namely co-occurrence weighted masking and adaptive thresholding. We also propose systematic qualitative and quantitative methods to rigorously test the quality of generated text for non-autoregressive generation. One of the models in our suite, DynaMo-7.3B-T3, achieves same-quality generated text as the baseline (Pythia-6.9B) while achieving 2.57× speed-up with only 5.87% and 2.67% parameter and training time overheads, respectively.