Nitish Joshi


pdf bib
An Investigation of the (In)effectiveness of Counterfactually Augmented Data
Nitish Joshi | He He
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While pretrained language models achieve excellent performance on natural language understanding benchmarks, they tend to rely on spurious correlations and generalize poorly to out-of-distribution (OOD) data. Recent work has explored using counterfactually-augmented data (CAD)—data generated by minimally perturbing examples to flip the ground-truth label—to identify robust features that are invariant under distribution shift. However, empirical results using CAD during training for OOD generalization have been mixed. To explain this discrepancy, through a toy theoretical example and empirical analysis on two crowdsourced CAD datasets, we show that: (a) while features perturbed in CAD are indeed robust features, it may prevent the model from learning unperturbed robust features; and (b) CAD may exacerbate existing spurious correlations in the data. Our results thus show that the lack of perturbation diversity limits CAD’s effectiveness on OOD generalization, calling for innovative crowdsourcing procedures to elicit diverse perturbation of examples.

pdf bib
QuALITY: Question Answering with Long Input Texts, Yes!
Richard Yuanzhe Pang | Alicia Parrish | Nitish Joshi | Nikita Nangia | Jason Phang | Angelica Chen | Vishakh Padmakumar | Johnny Ma | Jana Thompson | He He | Samuel Bowman
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).


pdf bib
Explore, Propose, and Assemble: An Interpretable Model for Multi-Hop Reading Comprehension
Yichen Jiang | Nitish Joshi | Yen-Chun Chen | Mohit Bansal
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multi-hop reading comprehension requires the model to explore and connect relevant information from multiple sentences/documents in order to answer the question about the context. To achieve this, we propose an interpretable 3-module system called Explore-Propose-Assemble reader (EPAr). First, the Document Explorer iteratively selects relevant documents and represents divergent reasoning chains in a tree structure so as to allow assimilating information from all chains. The Answer Proposer then proposes an answer from every root-to-leaf path in the reasoning tree. Finally, the Evidence Assembler extracts a key sentence containing the proposed answer from every path and combines them to predict the final answer. Intuitively, EPAr approximates the coarse-to-fine-grained comprehension behavior of human readers when facing multiple long documents. We jointly optimize our 3 modules by minimizing the sum of losses from each stage conditioned on the previous stage’s output. On two multi-hop reading comprehension datasets WikiHop and MedHop, our EPAr model achieves significant improvements over the baseline and competitive results compared to the state-of-the-art model. We also present multiple reasoning-chain-recovery tests and ablation studies to demonstrate our system’s ability to perform interpretable and accurate reasoning.

pdf bib
Cross-Lingual Training for Automatic Question Generation
Vishwajeet Kumar | Nitish Joshi | Arijit Mukherjee | Ganesh Ramakrishnan | Preethi Jyothi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Automatic question generation (QG) is a challenging problem in natural language understanding. QG systems are typically built assuming access to a large number of training instances where each instance is a question and its corresponding answer. For a new language, such training instances are hard to obtain making the QG problem even more challenging. Using this as our motivation, we study the reuse of an available large QG dataset in a secondary language (e.g. English) to learn a QG model for a primary language (e.g. Hindi) of interest. For the primary language, we assume access to a large amount of monolingual text but only a small QG dataset. We propose a cross-lingual QG model which uses the following training regime: (i) Unsupervised pretraining of language models in both primary and secondary languages and (ii) joint supervised training for QG in both languages. We demonstrate the efficacy of our proposed approach using two different primary languages, Hindi and Chinese. Our proposed framework clearly outperforms a number of baseline models, including a fully-supervised transformer-based model trained on the QG datasets in the primary language. We also create and release a new question answering dataset for Hindi consisting of 6555 sentences.