Noriyuki Kojima


2023

pdf bib
lilGym: Natural Language Visual Reasoning with Reinforcement Learning
Anne Wu | Kiante Brantley | Noriyuki Kojima | Yoav Artzi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present lilGym, a new benchmark for language-conditioned reinforcement learning in visual environments. lilGym is based on 2,661 highly-compositional human-written natural language statements grounded in an interactive visual environment. We introduce a new approach for exact reward computation in every possible world state by annotating all statements with executable Python programs. Each statement is paired with multiple start states and reward functions to form thousands of distinct Markov Decision Processes of varying difficulty. We experiment with lilGym with different models and learning regimes. Our results and analysis show that while existing methods are able to achieve non-trivial performance, lilGym forms a challenging open problem. lilGym is available at https://lil.nlp.cornell.edu/lilgym/.

2022

pdf bib
Abstract Visual Reasoning with Tangram Shapes
Anya Ji | Noriyuki Kojima | Noah Rush | Alane Suhr | Wai Keen Vong | Robert Hawkins | Yoav Artzi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We introduce KiloGram, a resource for studying abstract visual reasoning in humans and machines. Drawing on the history of tangram puzzles as stimuli in cognitive science, we build a richly annotated dataset that, with >1k distinct stimuli, is orders of magnitude larger and more diverse than prior resources. It is both visually and linguistically richer, moving beyond whole shape descriptions to include segmentation maps and part labels. We use this resource to evaluate the abstract visual reasoning capacities of recent multi-modal models. We observe that pre-trained weights demonstrate limited abstract reasoning, which dramatically improves with fine-tuning. We also observe that explicitly describing parts aids abstract reasoning for both humans and models, especially when jointly encoding the linguistic and visual inputs.

2021

pdf bib
Continual Learning for Grounded Instruction Generation by Observing Human Following Behavior
Noriyuki Kojima | Alane Suhr | Yoav Artzi
Transactions of the Association for Computational Linguistics, Volume 9

We study continual learning for natural language instruction generation, by observing human users’ instruction execution. We focus on a collaborative scenario, where the system both acts and delegates tasks to human users using natural language. We compare user execution of generated instructions to the original system intent as an indication to the system’s success communicating its intent. We show how to use this signal to improve the system’s ability to generate instructions via contextual bandit learning. In interaction with real users, our system demonstrates dramatic improvements in its ability to generate language over time.

2020

pdf bib
What is Learned in Visually Grounded Neural Syntax Acquisition
Noriyuki Kojima | Hadar Averbuch-Elor | Alexander Rush | Yoav Artzi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Visual features are a promising signal for learning bootstrap textual models. However, blackbox learning models make it difficult to isolate the specific contribution of visual components. In this analysis, we consider the case study of the Visually Grounded Neural Syntax Learner (Shi et al., 2019), a recent approach for learning syntax from a visual training signal. By constructing simplified versions of the model, we isolate the core factors that yield the model’s strong performance. Contrary to what the model might be capable of learning, we find significantly less expressive versions produce similar predictions and perform just as well, or even better. We also find that a simple lexical signal of noun concreteness plays the main role in the model’s predictions as opposed to more complex syntactic reasoning.

2019

pdf bib
Representing Movie Characters in Dialogues
Mahmoud Azab | Noriyuki Kojima | Jia Deng | Rada Mihalcea
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We introduce a new embedding model to represent movie characters and their interactions in a dialogue by encoding in the same representation the language used by these characters as well as information about the other participants in the dialogue. We evaluate the performance of these new character embeddings on two tasks: (1) character relatedness, using a dataset we introduce consisting of a dense character interaction matrix for 4,378 unique character pairs over 22 hours of dialogue from eighteen movies; and (2) character relation classification, for fine- and coarse-grained relations, as well as sentiment relations. Our experiments show that our model significantly outperforms the traditional Word2Vec continuous bag-of-words and skip-gram models, demonstrating the effectiveness of the character embeddings we introduce. We further show how these embeddings can be used in conjunction with a visual question answering system to improve over previous results.

2018

pdf bib
Speaker Naming in Movies
Mahmoud Azab | Mingzhe Wang | Max Smith | Noriyuki Kojima | Jia Deng | Rada Mihalcea
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We propose a new model for speaker naming in movies that leverages visual, textual, and acoustic modalities in an unified optimization framework. To evaluate the performance of our model, we introduce a new dataset consisting of six episodes of the Big Bang Theory TV show and eighteen full movies covering different genres. Our experiments show that our multimodal model significantly outperforms several competitive baselines on the average weighted F-score metric. To demonstrate the effectiveness of our framework, we design an end-to-end memory network model that leverages our speaker naming model and achieves state-of-the-art results on the subtitles task of the MovieQA 2017 Challenge.