Nsrin Ashraf


2024

pdf bib
BFCI at AraFinNLP2024: Support Vector Machines for Arabic Financial Text Classification
Nsrin Ashraf | Hamada Nayel | Mohammed Aldawsari | Hosahalli Shashirekha | Tarek Elshishtawy
Proceedings of The Second Arabic Natural Language Processing Conference

In this paper, a description of the system submitted by BFCAI team to the AraFinNLP2024 shared task has been introduced. Our team participated in the first subtask, which aims at detecting the customer intents of cross-dialectal Arabic queries in the banking domain. Our system follows the common pipeline of text classification models using primary classification algorithms integrated with basic vectorization approach for feature extraction. Multi-layer Perceptron, Stochastic Gradient Descent and Support Vector Machines algorithms have been implemented and support vector machines outperformed all other algorithms with an f-score of 49%. Our submission’s result is appropriate compared to the simplicity of the proposed model’s structure.

2022

pdf bib
NAYEL @LT-EDI-ACL2022: Homophobia/Transphobia Detection for Equality, Diversity, and Inclusion using SVM
Nsrin Ashraf | Mohamed Taha | Ahmed Abd Elfattah | Hamada Nayel
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

Analysing the contents of social media platforms such as YouTube, Facebook and Twitter gained interest due to the vast number of users. One of the important tasks is homophobia/transphobia detection. This paper illustrates the system submitted by our team for the homophobia/transphobia detection in social media comments shared task. A machine learning-based model has been designed and various classification algorithms have been implemented for automatic detection of homophobia in YouTube comments. TF/IDF has been used with a range of bigram model for vectorization of comments. Support Vector Machines has been used to develop the proposed model and our submission reported 0.91, 0.92, 0.88 weighted f1-score for English, Tamil and Tamil-English datasets respectively.

pdf bib
BFCAI at SemEval-2022 Task 6: Multi-Layer Perceptron for Sarcasm Detection in Arabic Texts
Nsrin Ashraf | Fathy Elkazzaz | Mohamed Taha | Hamada Nayel | Tarek Elshishtawy
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes the systems submitted to iSarcasm shared task. The aim of iSarcasm is to identify the sarcastic contents in Arabic and English text. Our team participated in iSarcasm for the Arabic language. A multi-Layer machine learning based model has been submitted for Arabic sarcasm detection. In this model, a vector space TF-IDF has been used as for feature representation. The submitted system is simple and does not need any external resources. The test results show encouraging results.