Nan Lin


2025

pdf bib
Discovering Semantic Subdimensions through Disentangled Conceptual Representations
Yunhao Zhang | Shaonan Wang | Nan Lin | Xinyi Dong | Chong Li | Chengqing Zong
Findings of the Association for Computational Linguistics: EMNLP 2025

Understanding the core dimensions of conceptual semantics is fundamental to uncovering how meaning is organized in language and the brain. Existing approaches often rely on predefined semantic dimensions that offer only broad representations, overlooking finer conceptual distinctions. This paper proposes a novel framework to investigate the subdimensions underlying coarse-grained semantic dimensions. Specifically, we introduce a Disentangled Continuous Semantic Representation Model (DCSRM) that decomposes word embeddings from large language models into multiple sub-embeddings, each encoding specific semantic information. Using these subembeddings, we identify a set of interpretable semantic subdimensions. To assess their neural plausibility, we apply voxel-wise encoding models to map these subdimensions to brain activation. Our work offers more fine-grained interpretable semantic subdimensions of conceptual meaning. Further analyses reveal that semantic dimensions are structured according to distinct principles, with polarity emerging as a key factor driving their decomposition into subdimensions. The neural correlates of the identified subdimensions support their cognitive and neuroscientific plausibility.

2022

pdf bib
Is the Brain Mechanism for Hierarchical Structure Building Universal Across Languages? An fMRI Study of Chinese and English
Xiaohan Zhang | Shaonan Wang | Nan Lin | Chengqing Zong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Evidence from psycholinguistic studies suggests that the human brain builds a hierarchical syntactic structure during language comprehension. However, it is still unknown whether the neural basis of such structures is universal across languages. In this paper, we first analyze the differences in language structure between two diverse languages: Chinese and English. By computing the working memory requirements when applying parsing strategies to different language structures, we find that top-down parsing generates less memory load for the right-branching English and bottom-up parsing is less memory-demanding for Chinese.Then we use functional magnetic resonance imaging (fMRI) to investigate whether the brain has different syntactic adaptation strategies in processing Chinese and English. Specifically, for both Chinese and English, we extract predictors from the implementations of different parsing strategies, i.e., bottom-up and top-down. Then, these predictors are separately associated with fMRI signals. Results show that for Chinese and English, the brain utilizes bottom-up and top-down parsing strategies separately. These results reveal that the brain adopts parsing strategies with less memory processing load according to different language structures.