Current foundation models have shown impressive performance across various tasks. However, several studies have revealed that these models are not effective for everyone due to the imbalanced geographical and economic representation of the data used in the training process. Most of this data comes from Western countries, leading to poor results for underrepresented countries. To address this issue, more data needs to be collected from these countries, but the cost of annotation can be a significant bottleneck. In this paper, we propose methods to identify the data to be annotated to balance model performance and annotation costs. Our approach first involves finding the countries with images of topics (objects and actions) most visually distinct from those already in the training datasets used by current large vision-language foundation models. Next, we identify countries with higher visual similarity for these topics and show that using data from these countries to supplement the training data improves model performance and reduces annotation costs. The resulting lists of countries and corresponding topics are made available at https://github.com/MichiganNLP/visual_diversity_budget.
Recent progress in large language models (LLMs) has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that “it’s all been solved.” Not surprisingly, this has, in turn, made many NLP researchers – especially those at the beginning of their careers – worry about what NLP research area they should focus on. Has it all been solved, or what remaining questions can we work on regardless of LLMs? To address this question, this paper compiles NLP research directions rich for exploration. We identify fourteen different research areas encompassing 45 research directions that require new research and are not directly solvable by LLMs. While we identify many research areas, many others exist; we do not cover areas currently addressed by LLMs, but where LLMs lag behind in performance or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm.
Synthetic data generation has the potential to impact applications and domains with scarce data. However, before such data is used for sensitive tasks such as mental health, we need an understanding of how different demographics are represented in it. In our paper, we analyze the potential of producing synthetic data using GPT-3 by exploring the various stressors it attributes to different race and gender combinations, to provide insight for future researchers looking into using LLMs for data generation. Using GPT-3, we develop HeadRoom, a synthetic dataset of 3,120 posts about depression-triggering stressors, by controlling for race, gender, and time frame (before and after COVID-19). Using this dataset, we conduct semantic and lexical analyses to (1) identify the predominant stressors for each demographic group; and (2) compare our synthetic data to a human-generated dataset. We present the procedures to generate queries to develop depression data using GPT-3, and conduct analyzes to uncover the types of stressors it assigns to demographic groups, which could be used to test the limitations of LLMs for synthetic data generation for depression data. Our findings show that synthetic data mimics some of the human-generated data distribution for the predominant depression stressors across diverse demographics.
We address the task of human action representation and show how the approach to generating word representations based on co-occurrence can be adapted to generate human action representations by analyzing their co-occurrence in videos. To this end, we formalize the new task of human action co-occurrence identification in online videos, i.e., determine whether two human actions are likely to co-occur in the same interval of time.We create and make publicly available the Co-Act (Action Co-occurrence) dataset, consisting of a large graph of ~12k co-occurring pairs of visual actions and their corresponding video clips. We describe graph link prediction models that leverage visual and textual information to automatically infer if two actions are co-occurring.We show that graphs are particularly well suited to capture relations between human actions, and the learned graph representations are effective for our task and capture novel and relevant information across different data domains.
Despite the impressive performance of current AI models reported across various tasks, performance reports often do not include evaluations of how these models perform on the specific groups that will be impacted by these technologies. Among the minority groups under-represented in AI, data from low-income households are often overlooked in data collection and model evaluation. We evaluate the performance of a state-of-the-art vision-language model (CLIP) on a geo-diverse dataset containing household images associated with different income values (DollarStreet) and show that performance inequality exists among households of different income levels. Our results indicate that performance for the poorer groups is consistently lower than the wealthier groups across various topics and countries. We highlight insights that can help mitigate these issues and propose actionable steps for economic-level inclusive AI development.
Joint vision-language models have shown great performance over a diverse set of tasks. However, little is known about their limitations, as the high dimensional space learned by these models makes it difficult to identify semantic errors. Recent work has addressed this problem by designing highly controlled probing task benchmarks. Our paper introduces a more scalable solution that relies on already annotated benchmarks. Our method consists of extracting a large set of diverse features from a vision-language benchmark and measuring their correlation with the output of the target model. We confirm previous findings that CLIP behaves like a bag of words model and performs better with nouns and verbs; we also uncover novel insights such as CLIP getting confused by concrete words. Our framework is available at https://github.com/MichiganNLP/Scalable-VLM-Probing and can be used with other multimodal models and benchmarks.
We propose fill-in-the-blanks as a video understanding evaluation framework and introduce FIBER – a novel dataset consisting of 28,000 videos and descriptions in support of this evaluation framework. The fill-in-the-blanks setting tests a model’s understanding of a video by requiring it to predict a masked noun phrase in the caption of the video, given the video and the surrounding text. The FIBER benchmark does not share the weaknesses of the current state-of-the-art language-informed video understanding tasks, namely: (1) video question answering using multiple-choice questions, where models perform relatively well because they exploit linguistic biases in the task formulation, thus making our framework challenging for the current state-of-the-art systems to solve; and (2) video captioning, which relies on an open-ended evaluation framework that is often inaccurate because system answers may be perceived as incorrect if they differ in form from the ground truth. The FIBER dataset and our code are available at https://lit.eecs.umich.edu/fiber/.
We aim to investigate the performance of current OCR systems on low resource languages and low resource scripts. We introduce and make publicly available a novel benchmark, OCR4MT, consisting of real and synthetic data, enriched with noise, for 60 low-resource languages in low resource scripts. We evaluate state-of-the-art OCR systems on our benchmark and analyse most common errors. We show that OCR monolingual data is a valuable resource that can increase performance of Machine Translation models, when used in backtranslation. We then perform an ablation study to investigate how OCR errors impact Machine Translation performance and determine what is the minimum level of OCR quality needed for the monolingual data to be useful for Machine Translation.
We aim to automatically identify human action reasons in online videos. We focus on the widespread genre of lifestyle vlogs, in which people perform actions while verbally describing them. We introduce and make publicly available the WhyAct dataset, consisting of 1,077 visual actions manually annotated with their reasons. We describe a multimodal model that leverages visual and textual information to automatically infer the reasons corresponding to an action presented in the video.
We consider the task of identifying human actions visible in online videos. We focus on the widely spread genre of lifestyle vlogs, which consist of videos of people performing actions while verbally describing them. Our goal is to identify if actions mentioned in the speech description of a video are visually present. We construct a dataset with crowdsourced manual annotations of visible actions, and introduce a multimodal algorithm that leverages information derived from visual and linguistic clues to automatically infer which actions are visible in a video.