Oleksandr Polozov


2023

pdf bib
Natural Language to Code Generation in Interactive Data Science Notebooks
Pengcheng Yin | Wen-Ding Li | Kefan Xiao | Abhishek Rao | Yeming Wen | Kensen Shi | Joshua Howland | Paige Bailey | Michele Catasta | Henryk Michalewski | Oleksandr Polozov | Charles Sutton
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1078 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions. Arcade is publicly available at https://github.com/google-research/arcade-nl2code/.

2021

pdf bib
KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers
Chia-Hsuan Lee | Oleksandr Polozov | Matthew Richardson
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The goal of database question answering is to enable natural language querying of real-life relational databases in diverse application domains. Recently, large-scale datasets such as Spider and WikiSQL facilitated novel modeling techniques for text-to-SQL parsing, improving zero-shot generalization to unseen databases. In this work, we examine the challenges that still prevent these techniques from practical deployment. First, we present KaggleDBQA, a new cross-domain evaluation dataset of real Web databases, with domain-specific data types, original formatting, and unrestricted questions. Second, we re-examine the choice of evaluation tasks for text-to-SQL parsers as applied in real-life settings. Finally, we augment our in-domain evaluation task with database documentation, a naturally occurring source of implicit domain knowledge. We show that KaggleDBQA presents a challenge to state-of-the-art zero-shot parsers but a more realistic evaluation setting and creative use of associated database documentation boosts their accuracy by over 13.2%, doubling their performance.

pdf bib
Structure-Grounded Pretraining for Text-to-SQL
Xiang Deng | Ahmed Hassan Awadallah | Christopher Meek | Oleksandr Polozov | Huan Sun | Matthew Richardson
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Learning to capture text-table alignment is essential for tasks like text-to-SQL. A model needs to correctly recognize natural language references to columns and values and to ground them in the given database schema. In this paper, we present a novel weakly supervised Structure-Grounded pretraining framework (STRUG) for text-to-SQL that can effectively learn to capture text-table alignment based on a parallel text-table corpus. We identify a set of novel pretraining tasks: column grounding, value grounding and column-value mapping, and leverage them to pretrain a text-table encoder. Additionally, to evaluate different methods under more realistic text-table alignment settings, we create a new evaluation set Spider-Realistic based on Spider dev set with explicit mentions of column names removed, and adopt eight existing text-to-SQL datasets for cross-database evaluation. STRUG brings significant improvement over BERTLARGE in all settings. Compared with existing pretraining methods such as GRAPPA, STRUG achieves similar performance on Spider, and outperforms all baselines on more realistic sets. All the code and data used in this work will be open-sourced to facilitate future research.

2020

pdf bib
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
Bailin Wang | Richard Shin | Xiaodong Liu | Oleksandr Polozov | Matthew Richardson
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

When translating natural language questions into SQL queries to answer questions from a database, contemporary semantic parsing models struggle to generalize to unseen database schemas. The generalization challenge lies in (a) encoding the database relations in an accessible way for the semantic parser, and (b) modeling alignment between database columns and their mentions in a given query. We present a unified framework, based on the relation-aware self-attention mechanism, to address schema encoding, schema linking, and feature representation within a text-to-SQL encoder. On the challenging Spider dataset this framework boosts the exact match accuracy to 57.2%, surpassing its best counterparts by 8.7% absolute improvement. Further augmented with BERT, it achieves the new state-of-the-art performance of 65.6% on the Spider leaderboard. In addition, we observe qualitative improvements in the model’s understanding of schema linking and alignment. Our implementation will be open-sourced at https://github.com/Microsoft/rat-sql.

pdf bib
Learning Web-based Procedures by Reasoning over Explanations and Demonstrations in Context
Shashank Srivastava | Oleksandr Polozov | Nebojsa Jojic | Christopher Meek
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We explore learning web-based tasks from a human teacher through natural language explanations and a single demonstration. Our approach investigates a new direction for semantic parsing that models explaining a demonstration in a context, rather than mapping explanations to demonstrations. By leveraging the idea of inverse semantics from program synthesis to reason backwards from observed demonstrations, we ensure that all considered interpretations are consistent with executable actions in any context, thus simplifying the problem of search over logical forms. We present a dataset of explanations paired with demonstrations for web-based tasks. Our methods show better task completion rates than a supervised semantic parsing baseline (40% relative improvement on average), and are competitive with simple exploration-and-demonstration based methods, while requiring no exploration of the environment. In learning to align explanations with demonstrations, basic properties of natural language syntax emerge as learned behavior. This is an interesting example of pragmatic language acquisition without any linguistic annotation.