Olia Toporkov


2024

pdf bib
On the Role of Morphological Information for Contextual Lemmatization
Olia Toporkov | Rodrigo Agerri
Computational Linguistics, Volume 50, Issue 1 - March 2024

Lemmatization is a natural language processing (NLP) task that consists of producing, from a given inflected word, its canonical form or lemma. Lemmatization is one of the basic tasks that facilitate downstream NLP applications, and is of particular importance for high-inflected languages. Given that the process to obtain a lemma from an inflected word can be explained by looking at its morphosyntactic category, including fine-grained morphosyntactic information to train contextual lemmatizers has become common practice, without considering whether that is the optimum in terms of downstream performance. In order to address this issue, in this article we empirically investigate the role of morphological information to develop contextual lemmatizers in six languages within a varied spectrum of morphological complexity: Basque, Turkish, Russian, Czech, Spanish, and English. Furthermore, and unlike the vast majority of previous work, we also evaluate lemmatizers in out-of-domain settings, which constitutes, after all, their most common application use. The results of our study are rather surprising. It turns out that providing lemmatizers with fine-grained morphological features during training is not that beneficial, not even for agglutinative languages. In fact, modern contextual word representations seem to implicitly encode enough morphological information to obtain competitive contextual lemmatizers without seeing any explicit morphological signal. Moreover, our experiments suggest that the best lemmatizers out-of-domain are those using simple UPOS tags or those trained without morphology and, lastly, that current evaluation practices for lemmatization are not adequate to clearly discriminate between models.

pdf bib
Evaluating Shortest Edit Script Methods for Contextual Lemmatization
Olia Toporkov | Rodrigo Agerri
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Modern contextual lemmatizers often rely on automatically induced Shortest Edit Scripts (SES), namely, the number of edit operations to transform a word form into its lemma. In fact, different methods of computing SES have been proposed as an integral component in the architecture of several state-of-the-art contextual lemmatizers currently available. However, previous work has not investigated the direct impact of SES in the final lemmatization performance. In this paper we address this issue by focusing on lemmatization as a token classification task where the only input that the model receives is the word-label pairs in context, where the labels correspond to previously induced SES. Thus, by modifying in our lemmatization system only the SES labels that the model needs to learn, we may then objectively conclude which SES representation produces the best lemmatization results. We experiment with seven languages of different morphological complexity, namely, English, Spanish, Basque, Russian, Czech, Turkish and Polish, using multilingual and language-specific pre-trained masked language encoder-only models as a backbone to build our lemmatizers. Comprehensive experimental results, both in- and out-of-domain, indicate that computing the casing and edit operations separately is beneficial overall, but much more clearly for languages with high-inflected morphology. Notably, multilingual pre-trained language models consistently outperform their language-specific counterparts in every evaluation setting.