Improvements in language models’ capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of “long-context”, defined simply by the total length of the model’s input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
Despite it being the cornerstone of BPE, the most common tokenization algorithm, the importance of compression in the tokenization process is still unclear. In this paper, we argue for the theoretical importance of compression, that can be viewed as 0-gram language modeling where equal probability is assigned to all tokens. We also demonstrate the empirical importance of compression for downstream success of pre-trained language models. We control the compression ability of several BPE tokenizers by varying the amount of documents available during their training: from 1 million documents to a character-based tokenizer equivalent to no training data at all. We then pre-train English language models based on those tokenizers and fine-tune them over several tasks. We show that there is a correlation between tokenizers’ compression and models’ downstream performance, suggesting that compression is a reliable intrinsic indicator of tokenization quality. These correlations are more pronounced for generation tasks (over classification) or for smaller models (over large ones). We replicated a representative part of our experiments on Turkish and found similar results, confirming that our results hold for languages with typological characteristics dissimilar to English. We conclude that building better compressing tokenizers is a fruitful avenue for further research and for improving overall model performance.
Recent years have brought great advances into solving morphological tasks, mostly due to powerful neural models applied to various tasks as (re)inflection and analysis. Yet, such morphological tasks cannot be considered solved, especially when little training data is available or when generalizing to previously unseen lemmas. This work explores effects on performance obtained through various ways in which morphological models get access to sub-character phonological features that are often the targets of morphological processes. We design two methods to achieve this goal: one that leaves models as is but manipulates the data to include features instead of characters, and another that manipulates models to take phonological features into account when building representations for phonemes. We elicit phonemic data from standard graphemic data using language-specific grammars for languages with shallow grapheme-to-phoneme mapping, and we experiment with two reinflection models over eight languages. Our results show that our methods yield comparable results to the grapheme-based baseline overall, with minor improvements in some of the languages. All in all, we conclude that patterns in character distributions are likely to allow models to infer the underlying phonological characteristics, even when phonemes are not explicitly represented.
Large language models (LLMs) have been shown to possess impressive capabilities, while also raising crucial concerns about the faithfulness of their responses. A primary issue arising in this context is the management of (un)answerable queries by LLMs, which often results in hallucinatory behavior due to overconfidence. In this paper, we explore the behavior of LLMs when presented with (un)answerable queries. We ask: do models represent the fact that the question is (un)answerable when generating a hallucinatory answer? Our results show strong indications that such models encode the answerability of an input query, with the representation of the first decoded token often being a strong indicator. These findings shed new light on the spatial organization within the latent representations of LLMs, unveiling previously unexplored facets of these models. Moreover, they pave the way for the development of improved decoding techniques with better adherence to factual generation, particularly in scenarios where query (un)answerability is a concern.
Data contamination has become prevalent and challenging with the rise of models pretrained on large automatically-crawled corpora. For closed models, the training data becomes a trade secret, and even for open models, it is not trivial to detect contamination. Strategies such as leaderboards with hidden answers, or using test data which is guaranteed to be unseen, are expensive and become fragile with time. Assuming that all relevant actors value clean test data and will cooperate to mitigate data contamination, what can be done? We propose three strategies that can make a difference: (1) Test data made public should be encrypted with a public key and licensed to disallow derivative distribution; (2) demand training exclusion controls from closed API holders, and protect your test data by refusing to evaluate without them; (3) avoid data which appears with its solution on the internet, and release the web-page context of internet-derived data along with the data. These strategies are practical and can be effective in preventing data contamination.
The ability to identify and control different kinds of linguistic information encoded in vector representations of words has many use cases, especially for explainability and bias removal. This is usually done via a set of simple classification tasks, termed probes, to evaluate the information encoded in the embedding space. However, the involvement of a trainable classifier leads to entanglement between the probe’s results and the classifier’s nature. As a result, contemporary works on probing include tasks that do not involve training of auxiliary models. In this work we introduce the term indicator tasks for non-trainable tasks which are used to query embedding spaces for the existence of certain properties, and claim that this kind of tasks may point to a direction opposite to probes, and that this contradiction complicates the decision on whether a property exists in an embedding space. We demonstrate our claims with two test cases, one dealing with gender debiasing and another with the erasure of morphological information from embedding spaces. We show that the application of a suitable indicator provides a more accurate picture of the information captured and removed compared to probes. We thus conclude that indicator tasks should be implemented and taken into consideration when eliciting information from embedded representations.
The 2023 SIGMORPHON–UniMorph shared task on typologically diverse morphological inflection included a wide range of languages: 26 languages from 9 primary language families. The data this year was all lemma-split, to allow testing models’ generalization ability, and structured along the new hierarchical schema presented in (Batsuren et al., 2022). The systems submitted this year, 9 in number, showed ingenuity and innovativeness, including hard attention for explainability and bidirectional decoding. Special treatment was also given by many participants to the newly-introduced data in Japanese, due to the high abundance of unseen Kanji characters in its test set.
In recent years, a flurry of morphological datasets had emerged, most notably UniMorph, aa multi-lingual repository of inflection tables. However, the flat structure of the current morphological annotation makes the treatment of some languages quirky, if not impossible, specifically in cases of polypersonal agreement. In this paper we propose a general solution for such cases and expand the UniMorph annotation schema to naturally address this phenomenon, in which verbs agree with multiple arguments using true affixes. We apply this extended schema to one such language, Georgian, and provide a human-verified, accurate and balanced morphological dataset for Georgian verbs. The dataset has 4 times more tables and 6 times more verb forms compared to the existing UniMorph dataset, covering all possible variants of argument marking, demonstrating the adequacy of our proposed scheme. Experiments on a reinflection task show that generalization is easy when the data is split at the form level, but extremely hard when splitting along lemma lines. Expanding the other languages in UniMorph according to this schema is expected to improve both the coverage, consistency and interpretability of this benchmark.
In the domain of Morphology, Inflection is a fundamental and important task that gained a lot of traction in recent years, mostly via SIGMORPHON’s shared-tasks. With average accuracy above 0.9 over the scores of all languages, the task is considered mostly solved using relatively generic neural seq2seq models, even with little data provided. In this work, we propose to re-evaluate morphological inflection models by employing harder train-test splits that will challenge the generalization capacity of the models. In particular, as opposed to the naïve split-by-form, we propose a split-by-lemma method to challenge the performance on existing benchmarks. Our experiments with the three top-ranked systems on the SIGMORPHON’s 2020 shared-task show that the lemma-split presents an average drop of 30 percentage points in macro-average for the 90 languages included. The effect is most significant for low-resourced languages with a drop as high as 95 points, but even high-resourced languages lose about 10 points on average. Our results clearly show that generalizing inflection to unseen lemmas is far from being solved, presenting a simple yet effective means to promote more sophisticated models.
The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.
The 2022 Multilingual Representation Learning (MRL) Shared Task was dedicated to clause-level morphology. As the first ever benchmark that defines and evaluates morphology outside its traditional lexical boundaries, the shared task on multilingual clause-level morphology sets the scene for competition across different approaches to morphological modeling, with 3 clause-level sub-tasks: morphological inflection, reinflection and analysis, where systems are required to generate, manipulate or analyze simple sentences centered around a single content lexeme and a set of morphological features characterizing its syntactic clause. This year’s tasks covered eight typologically distinct languages: English, French, German, Hebrew, Russian, Spanish, Swahili and Turkish. The tasks has received submissions of four systems from three teams which were compared to two baselines implementing prominent multilingual learning methods. The results show that modern NLP models are effective in solving morphological tasks even at the clause level. However, there is still room for improvement, especially in the task of morphological analysis.
The 2022 SIGMORPHON–UniMorph shared task on large scale morphological inflection generation included a wide range of typologically diverse languages: 33 languages from 11 top-level language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. We emphasize generalization along different dimensions this year by evaluating test items with unseen lemmas and unseen features separately under small and large training conditions. Across the five submitted systems and two baselines, the prediction of inflections with unseen features proved challenging, with average performance decreased substantially from last year. This was true even for languages for which the forms were in principle predictable, which suggests that further work is needed in designing systems that capture the various types of generalization required for the world’s languages.
Morphological tasks use large multi-lingual datasets that organize words into inflection tables, which then serve as training and evaluation data for various tasks. However, a closer inspection of these data reveals profound cross-linguistic inconsistencies, which arise from the lack of a clear linguistic and operational definition of what is a word, and which severely impair the universality of the derived tasks. To overcome this deficiency, we propose to view morphology as a clause-level phenomenon, rather than word-level. It is anchored in a fixed yet inclusive set of features, that encapsulates all functions realized in a saturated clause. We deliver MightyMorph, a novel dataset for clause-level morphology covering 4 typologically different languages: English, German, Turkish, and Hebrew. We use this dataset to derive 3 clause-level morphological tasks: inflection, reinflection and analysis. Our experiments show that the clause-level tasks are substantially harder than the respective word-level tasks, while having comparable complexity across languages. Furthermore, redefining morphology to the clause-level provides a neat interface with contextualized language models (LMs) and allows assessing the morphological knowledge encoded in these models and their usability for morphological tasks. Taken together, this work opens up new horizons in the study of computational morphology, leaving ample space for studying neural morphology cross-linguistically.
Neural models for the various flavours of morphological reinflection tasks have proven to be extremely accurate given ample labeled data, yet labeled data may be slow and costly to obtain. In this work we aim to overcome this annotation bottleneck by bootstrapping labeled data from a seed as small as five labeled inflection tables, accompanied by a large bulk of unlabeled text. Our bootstrapping method exploits the orthographic and semantic regularities in morphological systems in a two-phased setup, where word tagging based on analogies is followed by word pairing based on distances. Our experiments with the Paradigm Cell Filling Problem over eight typologically different languages show that in languages with relatively simple morphology, orthographic regularities on their own allow inflection models to achieve respectable accuracy. Combined orthographic and semantic regularities alleviate difficulties with particularly complex morpho-phonological systems. We further show that our bootstrapping methods substantially outperform hallucination-based methods commonly used for overcoming the annotation bottleneck in morphological reinflection tasks.
Morphological tasks have gained decent popularity within the NLP community in the recent years, with large multi-lingual datasets providing morphological analysis of words, either in or out of context. However, the lack of a clear linguistic definition for words destines the annotative work to be incomplete and mired in inconsistencies, especially cross-linguistically. In this work we expand morphological inflection of words to inflection of sentences to provide true universality disconnected from orthographic traditions of white-space usage. To allow annotation for sentence-inflection we define a morphological annotation scheme by a fixed set of inflectional features. We present a small cross-linguistic dataset including semi-manually generated simple sentences in 4 typologically diverse languages annotated according to our suggested scheme, and show that the task of reinflection gets substantially more difficult but that the change of scope from words to well-defined sentences allows interface with contextualized language models.
This year’s iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features. In terms of the task, we enrich UniMorph with new data for 32 languages from 13 language families, with most of them being under-resourced: Kunwinjku, Classical Syriac, Arabic (Modern Standard, Egyptian, Gulf), Hebrew, Amharic, Aymara, Magahi, Braj, Kurdish (Central, Northern, Southern), Polish, Karelian, Livvi, Ludic, Veps, Võro, Evenki, Xibe, Tuvan, Sakha, Turkish, Indonesian, Kodi, Seneca, Asháninka, Yanesha, Chukchi, Itelmen, Eibela. We evaluate six systems on the new data and conduct an extensive error analysis of the systems’ predictions. Transformer-based models generally demonstrate superior performance on the majority of languages, achieving >90% accuracy on 65% of them. The languages on which systems yielded low accuracy are mainly under-resourced, with a limited amount of data. Most errors made by the systems are due to allomorphy, honorificity, and form variation. In addition, we observe that systems especially struggle to inflect multiword lemmas. The systems also produce misspelled forms or end up in repetitive loops (e.g., RNN-based models). Finally, we report a large drop in systems’ performance on previously unseen lemmas.
Training semantic parsers from weak supervision (denotations) rather than strong supervision (programs) complicates training in two ways. First, a large search space of potential programs needs to be explored at training time to find a correct program. Second, spurious programs that accidentally lead to a correct denotation add noise to training. In this work we propose that in closed worlds with clear semantic types, one can substantially alleviate these problems by utilizing an abstract representation, where tokens in both the language utterance and program are lifted to an abstract form. We show that these abstractions can be defined with a handful of lexical rules and that they result in sharing between different examples that alleviates the difficulties in training. To test our approach, we develop the first semantic parser for CNLVR, a challenging visual reasoning dataset, where the search space is large and overcoming spuriousness is critical, because denotations are either TRUE or FALSE, and thus random programs are likely to lead to a correct denotation. Our method substantially improves performance, and reaches 82.5% accuracy, a 14.7% absolute accuracy improvement compared to the best reported accuracy so far.