Ömer Kırnap
2018
Tree-Stack LSTM in Transition Based Dependency Parsing
Ömer Kırnap
|
Erenay Dayanık
|
Deniz Yuret
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
We introduce tree-stack LSTM to model state of a transition based parser with recurrent neural networks. Tree-stack LSTM does not use any parse tree based or hand-crafted features, yet performs better than models with these features. We also develop new set of embeddings from raw features to enhance the performance. There are 4 main components of this model: stack’s σ-LSTM, buffer’s β-LSTM, actions’ LSTM and tree-RNN. All LSTMs use continuous dense feature vectors (embeddings) as an input. Tree-RNN updates these embeddings based on transitions. We show that our model improves performance with low resource languages compared with its predecessors. We participate in CoNLL 2018 UD Shared Task as the “KParse” team and ranked 16th in LAS, 15th in BLAS and BLEX metrics, of 27 participants parsing 82 test sets from 57 languages.
2017
Parsing with Context Embeddings
Ömer Kırnap
|
Berkay Furkan Önder
|
Deniz Yuret
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
We introduce context embeddings, dense vectors derived from a language model that represent the left/right context of a word instance, and demonstrate that context embeddings significantly improve the accuracy of our transition based parser. Our model consists of a bidirectional LSTM (BiLSTM) based language model that is pre-trained to predict words in plain text, and a multi-layer perceptron (MLP) decision model that uses features from the language model to predict the correct actions for an ArcHybrid transition based parser. We participated in the CoNLL 2017 UD Shared Task as the “Koç University” team and our system was ranked 7th out of 33 systems that parsed 81 treebanks in 49 languages.