Onkar Arun Pandit

Also published as: Onkar Pandit


2021

pdf bib
Probing for Bridging Inference in Transformer Language Models
Onkar Pandit | Yufang Hou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations in-comparison with the lower and middle layers, also, few specific attention heads concentrate consistently on bridging. More importantly, we consider language models as a whole in our second approach where bridging anaphora resolution is formulated as a masked token prediction task (Of-Cloze test). Our formulation produces optimistic results without any fine-tuning, which indicates that pre-trained language models substantially capture bridging inference. Our further investigation shows that the distance between anaphor-antecedent and the context provided to language models play an important role in the inference.

2020

pdf bib
Integrating knowledge graph embeddings to improve mention representation for bridging anaphora resolution
Onkar Pandit | Pascal Denis | Liva Ralaivola
Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and Coreference

Lexical semantics and world knowledge are crucial for interpreting bridging anaphora. Yet, existing computational methods for acquiring and injecting this type of information into bridging resolution systems suffer important limitations. Based on explicit querying of external knowledge bases, earlier approaches are computationally expensive (hence, hardly scalable) and they map the data to be processed into high-dimensional spaces (careful handling of the curse of dimensionality and overfitting has to be in order). In this work, we take a different and principled approach which naturally addresses these issues. Specifically, we convert the external knowledge source (in this case, WordNet) into a graph, and learn embeddings of the graph nodes of low dimension to capture the crucial features of the graph topology and, at the same time, rich semantic information. Once properly identified from the mention text spans, these low dimensional graph node embeddings are combined with distributional text-based embeddings to provide enhanced mention representations. We illustrate the effectiveness of our approach by evaluating it on commonly used datasets, namely ISNotes and BASHI. Our enhanced mention representations yield significant accuracy improvements on both datasets when compared to different standalone text-based mention representations.

2018

pdf bib
CNN for Text-Based Multiple Choice Question Answering
Akshay Chaturvedi | Onkar Pandit | Utpal Garain
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The task of Question Answering is at the very core of machine comprehension. In this paper, we propose a Convolutional Neural Network (CNN) model for text-based multiple choice question answering where questions are based on a particular article. Given an article and a multiple choice question, our model assigns a score to each question-option tuple and chooses the final option accordingly. We test our model on Textbook Question Answering (TQA) and SciQ dataset. Our model outperforms several LSTM-based baseline models on the two datasets.

2017

pdf bib
Context Sensitive Lemmatization Using Two Successive Bidirectional Gated Recurrent Networks
Abhisek Chakrabarty | Onkar Arun Pandit | Utpal Garain
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce a composite deep neural network architecture for supervised and language independent context sensitive lemmatization. The proposed method considers the task as to identify the correct edit tree representing the transformation between a word-lemma pair. To find the lemma of a surface word, we exploit two successive bidirectional gated recurrent structures - the first one is used to extract the character level dependencies and the next one captures the contextual information of the given word. The key advantages of our model compared to the state-of-the-art lemmatizers such as Lemming and Morfette are - (i) it is independent of human decided features (ii) except the gold lemma, no other expensive morphological attribute is required for joint learning. We evaluate the lemmatizer on nine languages - Bengali, Catalan, Dutch, Hindi, Hungarian, Italian, Latin, Romanian and Spanish. It is found that except Bengali, the proposed method outperforms Lemming and Morfette on the other languages. To train the model on Bengali, we develop a gold lemma annotated dataset (having 1,702 sentences with a total of 20,257 word tokens), which is an additional contribution of this work.