2021
pdf
bib
abs
On the Usability of Transformers-based Models for a French Question-Answering Task
Oralie Cattan
|
Christophe Servan
|
Sophie Rosset
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings.
pdf
bib
abs
On the cross-lingual transferability of multilingual prototypical models across NLU tasks
Oralie Cattan
|
Sophie Rosset
|
Christophe Servan
Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing
2020
pdf
bib
abs
L’adaptabilité comme compétence pour les systèmes de dialogue orientés tâche (Adaptability as a skill for goal-oriented dialog systems)
Oralie Cattan
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL
Étendre les capacités d’adaptabilité des systèmes à toujours plus de nouveaux domaines sans données de référence constitue une pierre d’achoppement de taille. Prendre en charge plus de contenus serviciels constitue un moyen de diversifier l’éventail des capacités de compréhension des systèmes de dialogue et apporterait un véritable intérêt pour les utilisateurs par la richesse des échanges qu’elle rendrait possibles. Pour favoriser les progrès dans ce sens, la huitième édition du défi Dialog State Tracking Challenge introduit des pistes exploratoires permettant d’évaluer les capacités de généralisation et d’habileté des systèmes à composer à la fois avec la nouveauté et avec plusieurs domaines de tâches complexes. L’objectif de cet article est de rendre compte des recherches du domaine et contribue à donner des éléments de réponse de manière à mieux comprendre les limites des systèmes actuels et les méthodes appropriées pour aborder ces défis.
2019
pdf
bib
abs
Qwant Research @DEFT 2019 : appariement de documents et extraction d’informations à partir de cas cliniques (Document matching and information retrieval using clinical cases)
Estelle Maudet
|
Oralie Cattan
|
Maureen de Seyssel
|
Christophe Servan
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Défi Fouille de Textes (atelier TALN-RECITAL)
Dans ce papier, nous présentons la participation de Qwant Research aux tâches 2 et 3 de l’édition 2019 du défi fouille de textes (DEFT) portant sur l’analyse de documents cliniques rédigés en français. La tâche 2 est une tâche de similarité sémantique qui demande d’apparier cas cliniques et discussions médicales. Pour résoudre cette tâche, nous proposons une approche reposant sur des modèles de langue et évaluons l’impact de différents pré-traitements et de différentes techniques d’appariement sur les résultats. Pour la tâche 3, nous avons développé un système d’extraction d’information qui produit des résultats encourageants en termes de précision. Nous avons expérimenté deux approches différentes, l’une se fondant exclusivement sur l’utilisation de réseaux de neurones pour traiter la tâche, l’autre reposant sur l’exploitation des informations linguistiques issues d’une analyse syntaxique.