Text style transfer (TST) is crucial in natural language processing, aiming to endow text with a new style without altering its meaning. In real-world scenarios, not all styles have abundant resources. This work introduces TWIST (reusing Transferable Weight Increments for Style Text generation), a novel framework to mitigate data scarcity by utilizing style features in weight increments to transfer low-resource styles effectively. During target style learning, we derive knowledge via a specially designed weight pool and initialize the parameters for the unseen style. To enhance the effectiveness of merging, the target style weight increments are often merged from multiple source style weight increments through singular vectors. Considering the diversity of styles, we also designed a multi-key memory network that simultaneously focuses on task- and instance-level information to derive the most relevant weight increments. Results from multiple style transfer datasets show that TWIST demonstrates remarkable performance across different backbones, achieving particularly effective results in low-resource scenarios.
Recently, there has been considerable attention on detecting hallucinations and omissions in Machine Translation (MT) systems. The two dominant approaches to tackle this task involve analyzing the MT system’s internal states or relying on the output of external tools, such as sentence similarity or MT quality estimators. In this work, we introduce OTTAWA, a novel Optimal Transport (OT)-based word aligner specifically designed to enhance the detection of hallucinations and omissions in MT systems. Our approach explicitly models the missing alignments by introducing a “null” vector, for which we propose a novel one-side constrained OT setting to allow an adaptive null alignment. Our approach yields competitive results compared to state-of-the-art methods across 18 language pairs on the HalOmi benchmark. In addition, it shows promising features, such as the ability to distinguish between both error types and perform word-level detection without accessing the MT system’s internal states.
Length-control summarization aims to condense long texts into a short one within a certain length limit. Previous approaches often use autoregressive (AR) models and treat the length requirement as a soft constraint, which may not always be satisfied. In this study, we propose a novel length-control decoding algorithm based on the directed acyclic Transformer (DAT). Our approach allows for multiple plausible sequence fragments and predicts a path to connect them. In addition, we propose a Sequence Maximum a Posteriori (Seq-MAP) decoding algorithm that marginalizes different possible paths and finds the most probable summary satisfying the length budget. Our algorithm is based on beam search, which further facilitates a reranker for performance improvement. Experimental results on the Gigaword dataset demonstrate our state-of-the-art performance for length-control summarization.
Knowledge-grounded conversational models are known to suffer from producing factually invalid statements, a phenomenon commonly called hallucination. In this work, we investigate the underlying causes of this phenomenon: is hallucination due to the training data, or to the models? We conduct a comprehensive human study on both existing knowledge-grounded conversational benchmarks and several state-of-the-art models. Our study reveals that the standard benchmarks consist of > 60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations. Our findings raise important questions on the quality of existing datasets and models trained using them. We make our annotations publicly available for future research.
We discuss a variety of approaches to build a robust Depression level detection model from longer social media posts (i.e., Reddit Depression forum posts) using a mental health text pre-trained BERT model. Further, we report our experimental results based on a strategy to select excerpts from long text and then fine-tune the BERT model to combat the issue of memory constraints while processing such texts. We show that, with domain specific BERT, we can achieve reasonable accuracy with fixed text size (in this case 200 tokens) for this task. In addition we can use short text classifiers to extract relevant text from the long text and achieve slightly better accuracy, albeit, trading off with the processing time for extracting such excerpts.
Modern approaches in Natural Language Processing (NLP) require, ideally, large amounts of labelled data for model training. However, new language resources, for example, for Named Entity Recognition (NER), Co-reference Resolution (CR), Entity Linking (EL) and Relation Extraction (RE), naming a few of the most popular tasks in NLP, have always been challenging to create since manual text annotations can be very time-consuming to acquire. While there may be an acceptable amount of labelled data available for some of these tasks in one language, there may be a lack of datasets in another. WEXEA is a tool to exhaustively annotate entities in the English Wikipedia. Guidelines for editors of Wikipedia articles result, on the one hand, in only a few annotations through hyperlinks, but on the other hand, make it easier to exhaustively annotate the rest of these articles with entities than starting from scratch. We propose the following main improvements to WEXEA: Creating multi-lingual corpora, improved entity annotations using a proven NER system, annotating dates and times. A brief evaluation of the annotation quality of WEXEA is added.
The goal of information-seeking dialogue is to respond to seeker queries with natural language utterances that are grounded on knowledge sources. However, dialogue systems often produce unsupported utterances, a phenomenon known as hallucination. To mitigate this behavior, we adopt a data-centric solution and create FaithDial, a new benchmark for hallucination-free dialogues, by editing hallucinated responses in the Wizard of Wikipedia (WoW) benchmark. We observe that FaithDial is more faithful than WoW while also maintaining engaging conversations. We show that FaithDial can serve as training signal for: i) a hallucination critic, which discriminates whether an utterance is faithful or not, and boosts the performance by 12.8 F1 score on the BEGIN benchmark compared to existing datasets for dialogue coherence; ii) high-quality dialogue generation. We benchmark a series of state-of-the-art models and propose an auxiliary contrastive objective that achieves the highest level of faithfulness and abstractiveness based on several automated metrics. Further, we find that the benefits of FaithDial generalize to zero-shot transfer on other datasets, such as CMU-Dog and TopicalChat. Finally, human evaluation reveals that responses generated by models trained on FaithDial are perceived as more interpretable, cooperative, and engaging.
We present our novel, hyperparameter-free topic modelling algorithm, Community Topic. Our algorithm is based on mining communities from term co-occurrence networks. We empirically evaluate and compare Community Topic with Latent Dirichlet Allocation and the recently developed top2vec algorithm. We find that Community Topic runs faster than the competitors and produces topics that achieve higher coherence scores. Community Topic can discover coherent topics at various scales. The network representation used by Community Topic results in a natural relationship between topics and a topic hierarchy. This allows sub- and super-topics to be found on demand. These features make Community Topic the ideal tool for downstream applications such as applied research and conversational agents.
Multi-label emotion classification is an important task in NLP and is essential to many applications. In this work, we propose a sequence-to-emotion (Seq2Emo) approach, which implicitly models emotion correlations in a bi-directional decoder. Experiments on SemEval’18 and GoEmotions datasets show that our approach outperforms state-of-the-art methods (without using external data). In particular, Seq2Emo outperforms the binary relevance (BR) and classifier chain (CC) approaches in a fair setting.
In this paper, we propose a globally normalized model for context-free grammar (CFG)-based semantic parsing. Instead of predicting a probability, our model predicts a real-valued score at each step and does not suffer from the label bias problem. Experiments show that our approach outperforms locally normalized models on small datasets, but it does not yield improvement on a large dataset.
Dialogue systems powered by large pre-trained language models exhibit an innate ability to deliver fluent and natural-sounding responses. Despite their impressive performance, these models are fitful and can often generate factually incorrect statements impeding their widespread adoption. In this paper, we focus on the task of improving faithfulness and reducing hallucination of neural dialogue systems to known facts supplied by a Knowledge Graph (KG). We propose Neural Path Hunter which follows a generate-then-refine strategy whereby a generated response is amended using the KG. Neural Path Hunter leverages a separate token-level fact critic to identify plausible sources of hallucination followed by a refinement stage that retrieves correct entities by crafting a query signal that is propagated over a k-hop subgraph. We empirically validate our proposed approach on the OpenDialKG dataset (Moon et al., 2019) against a suite of metrics and report a relative improvement of faithfulness over dialogue responses by 20.35% based on FeQA (Durmus et al., 2020). The code is available at https://github.com/nouhadziri/Neural-Path-Hunter.
In this paper, we describe our mUlti-task learNIng for cOmmonsense reasoNing (UNION) system submitted for Task C of the SemEval2020 Task 4, which is to generate a reason explaining why a given false statement is non-sensical. However, we found in the early experiments that simple adaptations such as fine-tuning GPT2 often yield dull and non-informative generations (e.g. simple negations). In order to generate more meaningful explanations, we propose UNION, a unified end-to-end framework, to utilize several existing commonsense datasets so that it allows a model to learn more dynamics under the scope of commonsense reasoning. In order to perform model selection efficiently, accurately, and promptly, we also propose a couple of auxiliary automatic evaluation metrics so that we can extensively compare the models from different perspectives. Our submitted system not only results in a good performance in the proposed metrics but also outperforms its competitors with the highest achieved score of 2.10 for human evaluation while remaining a BLEU score of 15.7. Our code is made publicly available.
Building predictive models for information extraction from text, such as named entity recognition or the extraction of semantic relationships between named entities in text, requires a large corpus of annotated text. Wikipedia is often used as a corpus for these tasks where the annotation is a named entity linked by a hyperlink to its article. However, editors on Wikipedia are only expected to link these mentions in order to help the reader to understand the content, but are discouraged from adding links that do not add any benefit for understanding an article. Therefore, many mentions of popular entities (such as countries or popular events in history), or previously linked articles, as well as the article’s entity itself, are not linked. In this paper, we discuss WEXEA, a Wikipedia EXhaustive Entity Annotation system, to create a text corpus based on Wikipedia with exhaustive annotations of entity mentions, i.e. linking all mentions of entities to their corresponding articles. This results in a huge potential for additional annotations that can be used for downstream NLP tasks, such as Relation Extraction. We show that our annotations are useful for creating distantly supervised datasets for this task. Furthermore, we publish all code necessary to derive a corpus from a raw Wikipedia dump, so that it can be reproduced by everyone.
This paper describes the system submitted by ANA Team for the SemEval-2019 Task 3: EmoContext. We propose a novel Hierarchi- cal LSTMs for Contextual Emotion Detection (HRLCE) model. It classifies the emotion of an utterance given its conversational con- text. The results show that, in this task, our HRCLE outperforms the most recent state-of- the-art text classification framework: BERT. We combine the results generated by BERT and HRCLE to achieve an overall score of 0.7709 which ranked 5th on the final leader board of the competition among 165 Teams.
Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses.
Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses. This paper has been accepted in NAACL 2019.
Sequence-to-Sequence (Seq2Seq) models have witnessed a notable success in generating natural conversational exchanges. Notwithstanding the syntactically well-formed responses generated by these neural network models, they are prone to be acontextual, short and generic. In this work, we introduce a Topical Hierarchical Recurrent Encoder Decoder (THRED), a novel, fully data-driven, multi-turn response generation system intended to produce contextual and topic-aware responses. Our model is built upon the basic Seq2Seq model by augmenting it with a hierarchical joint attention mechanism that incorporates topical concepts and previous interactions into the response generation. To train our model, we provide a clean and high-quality conversational dataset mined from Reddit comments. We evaluate THRED on two novel automated metrics, dubbed Semantic Similarity and Response Echo Index, as well as with human evaluation. Our experiments demonstrate that the proposed model is able to generate more diverse and contextually relevant responses compared to the strong baselines.
Self-attentional models are a new paradigm for sequence modelling tasks which differ from common sequence modelling methods, such as recurrence-based and convolution-based sequence learning, in the way that their architecture is only based on the attention mechanism. Self-attentional models have been used in the creation of the state-of-the-art models in many NLP task such as neural machine translation, but their usage has not been explored for the task of training end-to-end task-oriented dialogue generation systems yet. In this study, we apply these models on the DSTC2 dataset for training task-oriented chatbots. Our finding shows that self-attentional models can be exploited to create end-to-end task-oriented chatbots which not only achieve higher evaluation scores compared to recurrence-based models, but also do so more efficiently.
Despite myriad efforts in the literature designing neural dialogue generation systems in recent years, very few consider putting restrictions on the response itself. They learn from collections of past responses and generate one based on a given utterance without considering, speech act, desired style or emotion to be expressed. In this research, we address the problem of forcing the dialogue generation to express emotion. We present three models that either concatenate the desired emotion with the source input during the learning, or push the emotion in the decoder. The results, evaluated with an emotion tagger, are encouraging with all three models, but present better outcome and promise with our model that adds the emotion vector in the decoder.