Or Shachar


2025

pdf bib
NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
Or Shachar | Uri Katz | Yoav Goldberg | Oren Glickman
Findings of the Association for Computational Linguistics: EMNLP 2025

We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Recognition (NER), where a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on pretrained language models (LLMs) to embed both entity mentions and type descriptions into a shared semantic space. We show that internal representations—specifically, the value vectors from mid-layer transformer blocks—encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical (BM25) and dense (sentence-level) retrieval baselines, particularly in low-context settings. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval.