Language models (LMs) have achieved notable success in numerous NLP tasks, employing both fine-tuning and in-context learning (ICL) methods. While language models demonstrate exceptional performance, they face robustness challenges due to spurious correlations arising from imbalanced label distributions in training data or ICL exemplars. Previous research has primarily concentrated on word, phrase, and syntax features, neglecting the concept level, often due to the absence of concept labels and difficulty in identifying conceptual content in input texts. This paper introduces two main contributions. First, we employ ChatGPT to assign concept labels to texts, assessing concept bias in models during fine-tuning or ICL on test data. We find that LMs, when encountering spurious correlations between a concept and a label in training or prompts, resort to shortcuts for predictions. Second, we introduce a data rebalancing technique that incorporates ChatGPT-generated counterfactual data, thereby balancing label distribution and mitigating spurious correlations. Our method’s efficacy, surpassing traditional token removal approaches, is validated through extensive testing.
Large language models (LLMs) have significantly advanced various natural language processing tasks, but deploying them remains computationally expensive. Knowledge distillation (KD) is a promising solution, enabling the transfer of capabilities from larger teacher LLMs to more compact student models. Particularly, sequence-level KD, which distills rationale-based reasoning processes instead of merely final outcomes, shows great potential in enhancing students’ reasoning capabilities. However, current methods struggle with sequence-level KD under long-tailed data distributions, adversely affecting generalization on sparsely represented domains. We introduce the Multi-Stage Balanced Distillation (BalDistill) framework, which iteratively balances training data within a fixed computational budget. By dynamically selecting representative head domain examples and synthesizing tail domain examples, BalDistill achieves state-of-the-art performance across diverse long-tailed datasets, enhancing both the efficiency and efficacy of the distilled models.
Assessing instruction quality is a fundamental component of any improvement efforts in the education system. However, traditional manual assessments are expensive, subjective, and heavily dependent on observers’ expertise and idiosyncratic factors, preventing teachers from getting timely and frequent feedback. Different from prior research that mostly focuses on low-inference instructional practices on a singular basis, this paper presents the first study that leverages Natural Language Processing (NLP) techniques to assess multiple high-inference instructional practices in two distinct educational settings: in-person K-12 classrooms and simulated performance tasks for pre-service teachers. This is also the first study that applies NLP to measure a teaching practice that is widely acknowledged to be particularly effective for students with special needs. We confront two challenges inherent in NLP-based instructional analysis, including noisy and long input data and highly skewed distributions of human ratings. Our results suggest that pretrained Language Models (PLMs) demonstrate performances comparable to the agreement level of human raters for variables that are more discrete and require lower inference, but their efficacy diminishes with more complex teaching practices. Interestingly, using only teachers’ utterances as input yields strong results for student-centered variables, alleviating common concerns over the difficulty of collecting and transcribing high-quality student speech data in in-person teaching settings. Our findings highlight both the potential and the limitations of current NLP techniques in the education domain, opening avenues for further exploration.
Computational social science studies often contextualize content analysis within standard demographics. Since demographics are unavailable on many social media platforms (e.g. Twitter), numerous studies have inferred demographics automatically. Despite many studies presenting proof-of-concept inference of race and ethnicity, training of practical systems remains elusive since there are few annotated datasets. Existing datasets are small, inaccurate, or fail to cover the four most common racial and ethnic groups in the United States. We present a method to identify self-reports of race and ethnicity from Twitter profile descriptions. Despite the noise of automated supervision, our self-report datasets enable improvements in classification performance on gold standard self-report survey data. The result is a reproducible method for creating large-scale training resources for race and ethnicity.