Palak Jain
2024
From RAG to Riches: Retrieval Interlaced with Sequence Generation
Palak Jain
|
Livio Baldini Soares
|
Tom Kwiatkowski
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
We present RICHES, a novel approach that interleaves retrieval with sequence generation tasks. RICHES offers an alternative to conventional RAG systems by eliminating the need for separate retriever and generator. It retrieves documents by directly decoding their contents, constrained on the corpus. Unifying retrieval with generation allows us to adapt to diverse new tasks via prompting alone. RICHES can work with any Instruction-tuned model, without additional training. It provides attributed evidence, supports multi-hop retrievals and interleaves thoughts to plan on what to retrieve next, all within a single decoding pass of the LLM. We demonstrate the strong performance of RICHES across ODQA tasks including attributed and multi-hop QA.
2023
DiffQG: Generating Questions to Summarize Factual Changes
Jeremy R. Cole
|
Palak Jain
|
Julian Martin Eisenschlos
|
Michael J.Q. Zhang
|
Eunsol Choi
|
Bhuwan Dhingra
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Identifying the difference between two versions of the same article is useful to update knowledge bases and to understand how articles evolve. Paired texts occur naturally in diverse situations: reporters write similar news stories and maintainers of authoritative websites must keep their information up to date. We propose representing factual changes between paired documents as question-answer pairs, where the answer to the same question differs between two versions. We find that question-answer pairs can flexibly and concisely capture the updated contents. Provided with paired documents, annotators identify questions that are answered by one passage but answered differently or cannot be answered by the other. We release DiffQG which consists of 759 QA pairs and 1153 examples of paired passages with no factual change. These questions are intended to be both unambiguous and information-seeking and involve complex edits, pushing beyond the capabilities of current question generation and factual change detection systems. Our dataset summarizes the changes between two versions of the document as questions and answers, studying automatic update summarization in a novel way.
1-PAGER: One Pass Answer Generation and Evidence Retrieval
Palak Jain
|
Livio Soares
|
Tom Kwiatkowski
Findings of the Association for Computational Linguistics: EMNLP 2023
We present 1-Pager the first system that answers a question and retrieves evidence using a single Transformer-based model and decoding process. 1-Pager incrementally partitions the retrieval corpus using constrained decoding to select a document and answer string, and we show that this is competitive with comparable retrieve-and-read alternatives according to both retrieval and answer accuracy metrics. 1-Pager also outperforms the equivalent ‘closed-book’ question answering model, by grounding predictions in an evidence corpus. While 1-Pager is not yet on-par with more expensive systems that read many more documents before generating an answer, we argue that it provides an important step toward attributed generation by folding retrieval into the sequence-to-sequence paradigm that is currently dominant in NLP. We also show that the search paths used to partition the corpus are easy to read and understand, paving a way forward for interpretable neural retrieval.
Search
Fix data
Co-authors
- Tom Kwiatkowski 2
- Eunsol Choi 1
- Jeremy R. Cole 1
- Bhuwan Dhingra 1
- Julian Martin Eisenschlos 1
- show all...