Pankaj Gupta


2021

pdf bib
Multi-source Neural Topic Modeling in Multi-view Embedding Spaces
Pankaj Gupta | Yatin Chaudhary | Hinrich Schütze
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Though word embeddings and topics are complementary representations, several past works have only used pretrained word embeddings in (neural) topic modeling to address data sparsity in short-text or small collection of documents. This work presents a novel neural topic modeling framework using multi-view embed ding spaces: (1) pretrained topic-embeddings, and (2) pretrained word-embeddings (context-insensitive from Glove and context-sensitive from BERT models) jointly from one or many sources to improve topic quality and better deal with polysemy. In doing so, we first build respective pools of pretrained topic (i.e., TopicPool) and word embeddings (i.e., WordPool). We then identify one or more relevant source domain(s) and transfer knowledge to guide meaningful learning in the sparse target domain. Within neural topic modeling, we quantify the quality of topics and document representations via generalization (perplexity), interpretability (topic coherence) and information retrieval (IR) using short-text, long-text, small and large document collections from news and medical domains. Introducing the multi-source multi-view embedding spaces, we have shown state-of-the-art neural topic modeling using 6 source (high-resource) and 5 target (low-resource) corpora.

2020

pdf bib
TopicBERT for Energy Efficient Document Classification
Yatin Chaudhary | Pankaj Gupta | Khushbu Saxena | Vivek Kulkarni | Thomas Runkler | Hinrich Schütze
Findings of the Association for Computational Linguistics: EMNLP 2020

Prior research notes that BERT’s computational cost grows quadratically with sequence length thus leading to longer training times, higher GPU memory constraints and carbon emissions. While recent work seeks to address these scalability issues at pre-training, these issues are also prominent in fine-tuning especially for long sequence tasks like document classification. Our work thus focuses on optimizing the computational cost of fine-tuning for document classification. We achieve this by complementary learning of both topic and language models in a unified framework, named TopicBERT. This significantly reduces the number of self-attention operations – a main performance bottleneck. Consequently, our model achieves a 1.4x ( 40%) speedup with 40% reduction in CO2 emission while retaining 99.9% performance over 5 datasets.

2019

pdf bib
Neural Architectures for Fine-Grained Propaganda Detection in News
Pankaj Gupta | Khushbu Saxena | Usama Yaseen | Thomas Runkler | Hinrich Schütze
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

This paper describes our system (MIC-CIS) details and results of participation in the fine grained propaganda detection shared task 2019. To address the tasks of sentence (SLC) and fragment level (FLC) propaganda detection, we explore different neural architectures (e.g., CNN, LSTM-CRF and BERT) and extract linguistic (e.g., part-of-speech, named entity, readability, sentiment, emotion, etc.), layout and topical features. Specifically, we have designed multi-granularity and multi-tasking neural architectures to jointly perform both the sentence and fragment level propaganda detection. Additionally, we investigate different ensemble schemes such as majority-voting, relax-voting, etc. to boost overall system performance. Compared to the other participating systems, our submissions are ranked 3rd and 4th in FLC and SLC tasks, respectively.

pdf bib
Linguistically Informed Relation Extraction and Neural Architectures for Nested Named Entity Recognition in BioNLP-OST 2019
Pankaj Gupta | Usama Yaseen | Hinrich Schütze
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks

Named Entity Recognition (NER) and Relation Extraction (RE) are essential tools in distilling knowledge from biomedical literature. This paper presents our findings from participating in BioNLP Shared Tasks 2019. We addressed Named Entity Recognition including nested entities extraction, Entity Normalization and Relation Extraction. Our proposed approach of Named Entities can be generalized to different languages and we have shown it’s effectiveness for English and Spanish text. We investigated linguistic features, hybrid loss including ranking and Conditional Random Fields (CRF), multi-task objective and token level ensembling strategy to improve NER. We employed dictionary based fuzzy and semantic search to perform Entity Normalization. Finally, our RE system employed Support Vector Machine (SVM) with linguistic features. Our NER submission (team:MIC-CIS) ranked first in BB-2019 norm+NER task with standard error rate (SER) of 0.7159 and showed competitive performance on PharmaCo NER task with F1-score of 0.8662. Our RE system ranked first in the SeeDev-binary Relation Extraction Task with F1-score of 0.3738.

pdf bib
BioNLP-OST 2019 RDoC Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions
Pankaj Gupta | Yatin Chaudhary | Hinrich Schütze
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks

This paper presents our system details and results of participation in the RDoC Tasks of BioNLP-OST 2019. Research Domain Criteria (RDoC) construct is a multi-dimensional and broad framework to describe mental health disorders by combining knowledge from genomics to behaviour. Non-availability of RDoC labelled dataset and tedious labelling process hinders the use of RDoC framework to reach its full potential in Biomedical research community and Healthcare industry. Therefore, Task-1 aims at retrieval and ranking of PubMed abstracts relevant to a given RDoC construct and Task-2 aims at extraction of the most relevant sentence from a given PubMed abstract. We investigate (1) attention based supervised neural topic model and SVM for retrieval and ranking of PubMed abstracts and, further utilize BM25 and other relevance measures for re-ranking, (2) supervised and unsupervised sentence ranking models utilizing multi-view representations comprising of query-aware attention-based sentence representation (QAR), bag-of-words (BoW) and TF-IDF. Our best systems achieved 1st rank and scored 0.86 mAP and 0.58 macro average accuracy in Task-1 and Task-2 respectively.

2018

pdf bib
Joint Bootstrapping Machines for High Confidence Relation Extraction
Pankaj Gupta | Benjamin Roth | Hinrich Schütze
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Semi-supervised bootstrapping techniques for relationship extraction from text iteratively expand a set of initial seed instances. Due to the lack of labeled data, a key challenge in bootstrapping is semantic drift: if a false positive instance is added during an iteration, then all following iterations are contaminated. We introduce BREX, a new bootstrapping method that protects against such contamination by highly effective confidence assessment. This is achieved by using entity and template seeds jointly (as opposed to just one as in previous work), by expanding entities and templates in parallel and in a mutually constraining fashion in each iteration and by introducing higherquality similarity measures for templates. Experimental results show that BREX achieves an F1 that is 0.13 (0.87 vs. 0.74) better than the state of the art for four relationships.

pdf bib
Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
Pankaj Gupta | Subburam Rajaram | Hinrich Schütze | Bernt Andrassy
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Dynamic topic modeling facilitates the identification of topical trends over time in temporal collections of unstructured documents. We introduce a novel unsupervised neural dynamic topic model named as Recurrent Neural Network-Replicated Softmax Model (RNNRSM), where the discovered topics at each time influence the topic discovery in the subsequent time steps. We account for the temporal ordering of documents by explicitly modeling a joint distribution of latent topical dependencies over time, using distributional estimators with temporal recurrent connections. Applying RNN-RSM to 19 years of articles on NLP research, we demonstrate that compared to state-of-the art topic models, RNNRSM shows better generalization, topic interpretation, evolution and trends. We also introduce a metric (named as SPAN) to quantify the capability of dynamic topic model to capture word evolution in topics over time.

pdf bib
Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts
Pankaj Gupta | Bernt Andrassy | Hinrich Schütze
Proceedings of the Third Workshop on Semantic Deep Learning

The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by matching with historical tickets stored in knowledge base. A query is comprised of subject and description, while a historical ticket consists of subject, description and solution. To retrieve a relevant solution, we use textual similarity paradigm to learn similarity in the query and historical tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of asymmetric lengths, where subject is a short text but description and solution are multi-sentence texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text pairs, that gives 22% and 7% gain (Accuracy@10) for retrieval task, respectively over unsupervised and supervised baselines. We also show that the topic and distributed semantic features for short and long texts improved both similarity learning and retrieval.

pdf bib
LISA: Explaining Recurrent Neural Network Judgments via Layer-wIse Semantic Accumulation and Example to Pattern Transformation
Pankaj Gupta | Hinrich Schütze
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Recurrent neural networks (RNNs) are temporal networks and cumulative in nature that have shown promising results in various natural language processing tasks. Despite their success, it still remains a challenge to understand their hidden behavior. In this work, we analyze and interpret the cumulative nature of RNN via a proposed technique named as Layer-wIse-Semantic-Accumulation (LISA) for explaining decisions and detecting the most likely (i.e., saliency) patterns that the network relies on while decision making. We demonstrate (1) LISA: “How an RNN accumulates or builds semantics during its sequential processing for a given text example and expected response” (2) Example2pattern: “How the saliency patterns look like for each category in the data according to the network in decision making”. We analyse the sensitiveness of RNNs about different inputs to check the increase or decrease in prediction scores and further extract the saliency patterns learned by the network. We employ two relation classification datasets: SemEval 10 Task 8 and TAC KBP Slot Filling to explain RNN predictions via the LISA and example2pattern.

2016

pdf bib
Table Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction
Pankaj Gupta | Hinrich Schütze | Bernt Andrassy
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper proposes a novel context-aware joint entity and word-level relation extraction approach through semantic composition of words, introducing a Table Filling Multi-Task Recurrent Neural Network (TF-MTRNN) model that reduces the entity recognition and relation classification tasks to a table-filling problem and models their interdependencies. The proposed neural network architecture is capable of modeling multiple relation instances without knowing the corresponding relation arguments in a sentence. The experimental results show that a simple approach of piggybacking candidate entities to model the label dependencies from relations to entities improves performance. We present state-of-the-art results with improvements of 2.0% and 2.7% for entity recognition and relation classification, respectively on CoNLL04 dataset.

pdf bib
Combining Recurrent and Convolutional Neural Networks for Relation Classification
Ngoc Thang Vu | Heike Adel | Pankaj Gupta | Hinrich Schütze
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies