Pasquale Minervini


2021

pdf bib
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Patrick Lewis | Yuxiang Wu | Linqing Liu | Pasquale Minervini | Heinrich Küttler | Aleksandra Piktus | Pontus Stenetorp | Sebastian Riedel
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Open-domain Question Answering models that directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared with conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models fall short of the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) while retaining high accuracy. Lastly, we demonstrate RePAQ’s strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to “back-off” to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone.

pdf bib
Stereotype and Skew: Quantifying Gender Bias in Pre-trained and Fine-tuned Language Models
Daniel de Vassimon Manela | David Errington | Thomas Fisher | Boris van Breugel | Pasquale Minervini
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This paper proposes two intuitive metrics, skew and stereotype, that quantify and analyse the gender bias present in contextual language models when tackling the WinoBias pronoun resolution task. We find evidence that gender stereotype correlates approximately negatively with gender skew in out-of-the-box models, suggesting that there is a trade-off between these two forms of bias. We investigate two methods to mitigate bias. The first approach is an online method which is effective at removing skew at the expense of stereotype. The second, inspired by previous work on ELMo, involves the fine-tuning of BERT using an augmented gender-balanced dataset. We show that this reduces both skew and stereotype relative to its unaugmented fine-tuned counterpart. However, we find that existing gender bias benchmarks do not fully probe professional bias as pronoun resolution may be obfuscated by cross-correlations from other manifestations of gender prejudice.

pdf bib
Training Adaptive Computation for Open-Domain Question Answering with Computational Constraints
Yuxiang Wu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Adaptive Computation (AC) has been shown to be effective in improving the efficiency of Open-Domain Question Answering (ODQA) systems. However, the current AC approaches require tuning of all model parameters, and training state-of-the-art ODQA models requires significant computational resources that may not be available for most researchers. We propose Adaptive Passage Encoder, an AC method that can be applied to an existing ODQA model and can be trained efficiently on a single GPU. It keeps the parameters of the base ODQA model fixed, but it overrides the default layer-by-layer computation of the encoder with an AC policy that is trained to optimise the computational efficiency of the model. Our experimental results show that our method improves upon a state-of-the-art model on two datasets, and is also more accurate than previous AC methods due to the stronger base ODQA model. All source code and datasets are available at https://github.com/uclnlp/APE.

2020

pdf bib
Make Up Your Mind! Adversarial Generation of Inconsistent Natural Language Explanations
Oana-Maria Camburu | Brendan Shillingford | Pasquale Minervini | Thomas Lukasiewicz | Phil Blunsom
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

To increase trust in artificial intelligence systems, a promising research direction consists of designing neural models capable of generating natural language explanations for their predictions. In this work, we show that such models are nonetheless prone to generating mutually inconsistent explanations, such as ”Because there is a dog in the image.” and ”Because there is no dog in the [same] image.”, exposing flaws in either the decision-making process of the model or in the generation of the explanations. We introduce a simple yet effective adversarial framework for sanity checking models against the generation of inconsistent natural language explanations. Moreover, as part of the framework, we address the problem of adversarial attacks with full target sequences, a scenario that was not previously addressed in sequence-to-sequence attacks. Finally, we apply our framework on a state-of-the-art neural natural language inference model that provides natural language explanations for its predictions. Our framework shows that this model is capable of generating a significant number of inconsistent explanations.

pdf bib
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Sebastian Riedel | Pasquale Minervini | Pontus Stenetorp
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

pdf bib
Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversarial Training
Joe Stacey | Pasquale Minervini | Haim Dubossarsky | Sebastian Riedel | Tim Rocktäschel
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural Language Inference (NLI) datasets contain annotation artefacts resulting in spurious correlations between the natural language utterances and their respective entailment classes. These artefacts are exploited by neural networks even when only considering the hypothesis and ignoring the premise, leading to unwanted biases. Belinkov et al. (2019b) proposed tackling this problem via adversarial training, but this can lead to learned sentence representations that still suffer from the same biases. We show that the bias can be reduced in the sentence representations by using an ensemble of adversaries, encouraging the model to jointly decrease the accuracy of these different adversaries while fitting the data. This approach produces more robust NLI models, outperforming previous de-biasing efforts when generalised to 12 other NLI datasets (Belinkov et al., 2019a; Mahabadi et al., 2020). In addition, we find that the optimal number of adversarial classifiers depends on the dimensionality of the sentence representations, with larger sentence representations being more difficult to de-bias while benefiting from using a greater number of adversaries.

pdf bib
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of an early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

pdf bib
Undersensitivity in Neural Reading Comprehension
Johannes Welbl | Pasquale Minervini | Max Bartolo | Pontus Stenetorp | Sebastian Riedel
Findings of the Association for Computational Linguistics: EMNLP 2020

Current reading comprehension methods generalise well to in-distribution test sets, yet perform poorly on adversarially selected data. Prior work on adversarial inputs typically studies model oversensitivity: semantically invariant text perturbations that cause a model’s prediction to change. Here we focus on the complementary problem: excessive prediction undersensitivity, where input text is meaningfully changed but the model’s prediction does not, even though it should. We formulate an adversarial attack which searches among semantic variations of the question for which a model erroneously predicts the same answer, and with even higher probability. We demonstrate that models trained on both SQuAD2.0 and NewsQA are vulnerable to this attack, and then investigate data augmentation and adversarial training as defences. Both substantially decrease adversarial vulnerability, which generalises to held-out data and held-out attack spaces. Addressing undersensitivity furthermore improves model robustness on the previously introduced ADDSENT and ADDONESENT datasets, and models generalise better when facing train / evaluation distribution mismatch: they are less prone to overly rely on shallow predictive cues present only in the training set, and outperform a conventional model by as much as 10.9% F1.

2019

pdf bib
NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language
Leon Weber | Pasquale Minervini | Jannes Münchmeyer | Ulf Leser | Tim Rocktäschel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Rule-based models are attractive for various tasks because they inherently lead to interpretable and explainable decisions and can easily incorporate prior knowledge. However, such systems are difficult to apply to problems involving natural language, due to its large linguistic variability. In contrast, neural models can cope very well with ambiguity by learning distributed representations of words and their composition from data, but lead to models that are difficult to interpret. In this paper, we describe a model combining neural networks with logic programming in a novel manner for solving multi-hop reasoning tasks over natural language. Specifically, we propose to use an Prolog prover which we extend to utilize a similarity function over pretrained sentence encoders. We fine-tune the representations for the similarity function via backpropagation. This leads to a system that can apply rule-based reasoning to natural language, and induce domain-specific natural language rules from training data. We evaluate the proposed system on two different question answering tasks, showing that it outperforms two baselines – BiDAF (Seo et al., 2016a) and FastQA( Weissenborn et al., 2017) on a subset of the WikiHop corpus and achieves competitive results on the MedHop data set (Welbl et al., 2017).

2018

pdf bib
Jack the Reader – A Machine Reading Framework
Dirk Weissenborn | Pasquale Minervini | Isabelle Augenstein | Johannes Welbl | Tim Rocktäschel | Matko Bošnjak | Jeff Mitchell | Thomas Demeester | Tim Dettmers | Pontus Stenetorp | Sebastian Riedel
Proceedings of ACL 2018, System Demonstrations

Many Machine Reading and Natural Language Understanding tasks require reading supporting text in order to answer questions. For example, in Question Answering, the supporting text can be newswire or Wikipedia articles; in Natural Language Inference, premises can be seen as the supporting text and hypotheses as questions. Providing a set of useful primitives operating in a single framework of related tasks would allow for expressive modelling, and easier model comparison and replication. To that end, we present Jack the Reader (JACK), a framework for Machine Reading that allows for quick model prototyping by component reuse, evaluation of new models on existing datasets as well as integrating new datasets and applying them on a growing set of implemented baseline models. JACK is currently supporting (but not limited to) three tasks: Question Answering, Natural Language Inference, and Link Prediction. It is developed with the aim of increasing research efficiency and code reuse.

pdf bib
Adversarially Regularising Neural NLI Models to Integrate Logical Background Knowledge
Pasquale Minervini | Sebastian Riedel
Proceedings of the 22nd Conference on Computational Natural Language Learning

Adversarial examples are inputs to machine learning models designed to cause the model to make a mistake. They are useful for understanding the shortcomings of machine learning models, interpreting their results, and for regularisation. In NLP, however, most example generation strategies produce input text by using known, pre-specified semantic transformations, requiring significant manual effort and in-depth understanding of the problem and domain. In this paper, we investigate the problem of automatically generating adversarial examples that violate a set of given First-Order Logic constraints in Natural Language Inference (NLI). We reduce the problem of identifying such adversarial examples to a combinatorial optimisation problem, by maximising a quantity measuring the degree of violation of such constraints and by using a language model for generating linguistically-plausible examples. Furthermore, we propose a method for adversarially regularising neural NLI models for incorporating background knowledge. Our results show that, while the proposed method does not always improve results on the SNLI and MultiNLI datasets, it significantly and consistently increases the predictive accuracy on adversarially-crafted datasets – up to a 79.6% relative improvement – while drastically reducing the number of background knowledge violations. Furthermore, we show that adversarial examples transfer among model architectures, and that the proposed adversarial training procedure improves the robustness of NLI models to adversarial examples.

pdf bib
Extrapolation in NLP
Jeff Mitchell | Pontus Stenetorp | Pasquale Minervini | Sebastian Riedel
Proceedings of the Workshop on Generalization in the Age of Deep Learning

We argue that extrapolation to unseen data will often be easier for models that capture global structures, rather than just maximise their local fit to the training data. We show that this is true for two popular models: the Decomposable Attention Model and word2vec.

2009

pdf bib
Apertium goes SOA: an efficient and scalable service based on the Apertium rule-based machine translation platform
Pasquale Minervini
Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation

Service Oriented Architecture (SOA) is a paradigm for organising and using distributed services that may be under the control of different ownership domains and implemented using various technology stacks. In some contexts, an organisation using an IT infrastructure implementing the SOA paradigm can take a great benefit from the integration, in its business processes, of efficient machine translation (MT) services to overcome language barriers. This paper describes the architecture and the design patterns used to develop an MT service that is efficient, scalable and easy to integrate in new and existing business processes. The service is based on Apertium, a free/opensource rule-based machine translation platform.