Patrick Fernandes


pdf bib
CMU’s IWSLT 2022 Dialect Speech Translation System
Brian Yan | Patrick Fernandes | Siddharth Dalmia | Jiatong Shi | Yifan Peng | Dan Berrebbi | Xinyi Wang | Graham Neubig | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes CMU’s submissions to the IWSLT 2022 dialect speech translation (ST) shared task for translating Tunisian-Arabic speech to English text. We use additional paired Modern Standard Arabic data (MSA) to directly improve the speech recognition (ASR) and machine translation (MT) components of our cascaded systems. We also augment the paired ASR data with pseudo translations via sequence-level knowledge distillation from an MT model and use these artificial triplet ST data to improve our end-to-end (E2E) systems. Our E2E models are based on the Multi-Decoder architecture with searchable hidden intermediates. We extend the Multi-Decoder by orienting the speech encoder towards the target language by applying ST supervision as hierarchical connectionist temporal classification (CTC) multi-task. During inference, we apply joint decoding of the ST CTC and ST autoregressive decoder branches of our modified Multi-Decoder. Finally, we apply ROVER voting, posterior combination, and minimum bayes-risk decoding with combined N-best lists to ensemble our various cascaded and E2E systems. Our best systems reached 20.8 and 19.5 BLEU on test2 (blind) and test1 respectively. Without any additional MSA data, we reached 20.4 and 19.2 on the same test sets.

pdf bib
Predicting Attention Sparsity in Transformers
Marcos Treviso | António Góis | Patrick Fernandes | Erick Fonseca | Andre Martins
Proceedings of the Sixth Workshop on Structured Prediction for NLP

Transformers’ quadratic complexity with respect to the input sequence length has motivated a body of work on efficient sparse approximations to softmax. An alternative path, used by entmax transformers, consists of having built-in exact sparse attention; however this approach still requires quadratic computation. In this paper, we propose Sparsefinder, a simple model trained to identify the sparsity pattern of entmax attention before computing it. We experiment with three variants of our method, based on distances, quantization, and clustering, on two tasks: machine translation (attention in the decoder) and masked language modeling (encoder-only). Our work provides a new angle to study model efficiency by doing extensive analysis of the tradeoff between the sparsity and recall of the predicted attention graph. This allows for detailed comparison between different models along their Pareto curves, important to guide future benchmarks for sparse attention models.

pdf bib
Quality-Aware Decoding for Neural Machine Translation
Patrick Fernandes | António Farinhas | Ricardo Rei | José De Souza | Perez Ogayo | Graham Neubig | Andre Martins
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Despite the progress in machine translation quality estimation and evaluation in the last years, decoding in neural machine translation (NMT) is mostly oblivious to this and centers around finding the most probable translation according to the model (MAP decoding), approximated with beam search. In this paper, we bring together these two lines of research and propose quality-aware decoding for NMT, by leveraging recent breakthroughs in reference-free and reference-based MT evaluation through various inference methods like N-best reranking and minimum Bayes risk decoding. We perform an extensive comparison of various possible candidate generation and ranking methods across four datasets and two model classes and find that quality-aware decoding consistently outperforms MAP-based decoding according both to state-of-the-art automatic metrics (COMET and BLEURT) and to human assessments.


pdf bib
Do Context-Aware Translation Models Pay the Right Attention?
Kayo Yin | Patrick Fernandes | Danish Pruthi | Aditi Chaudhary | André F. T. Martins | Graham Neubig
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask several questions: What contexts do human translators use to resolve ambiguous words? Are models paying large amounts of attention to the same context? What if we explicitly train them to do so? To answer these questions, we introduce SCAT (Supporting Context for Ambiguous Translations), a new English-French dataset comprising supporting context words for 14K translations that professional translators found useful for pronoun disambiguation. Using SCAT, we perform an in-depth analysis of the context used to disambiguate, examining positional and lexical characteristics of the supporting words. Furthermore, we measure the degree of alignment between the model’s attention scores and the supporting context from SCAT, and apply a guided attention strategy to encourage agreement between the two.

pdf bib
Measuring and Increasing Context Usage in Context-Aware Machine Translation
Patrick Fernandes | Kayo Yin | Graham Neubig | André F. T. Martins
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent work in neural machine translation has demonstrated both the necessity and feasibility of using inter-sentential context, context from sentences other than those currently being translated. However, while many current methods present model architectures that theoretically can use this extra context, it is often not clear how much they do actually utilize it at translation time. In this paper, we introduce a new metric, conditional cross-mutual information, to quantify usage of context by these models. Using this metric, we measure how much document-level machine translation systems use particular varieties of context. We find that target context is referenced more than source context, and that including more context has a diminishing affect on results. We then introduce a new, simple training method, context-aware word dropout, to increase the usage of context by context-aware models. Experiments show that our method not only increases context usage, but also improves the translation quality according to metrics such as BLEU and COMET, as well as performance on anaphoric pronoun resolution and lexical cohesion contrastive datasets.