Patrick Y. Wu


2025

pdf bib
PairScale: Analyzing Attitude Change with Pairwise Comparisons
Rupak Sarkar | Patrick Y. Wu | Kristina Miler | Alexander Miserlis Hoyle | Philip Resnik
Findings of the Association for Computational Linguistics: NAACL 2025

We introduce a text-based framework for measuring attitudes in communities toward issues of interest, going beyond the pro/con/neutral of conventional stance detection to characterize attitudes on a continuous scale using both implicit and explicit evidence in language. The framework exploits LLMs both to extract attitude-related evidence and to perform pairwise comparisons that yield unidimensional attitude scores via the classic Bradley-Terry model. We validate the LLM-based steps using human judgments, and illustrate the utility of the approach for social science by examining the evolution of attitudes on two high-profile issues in U.S. politics in two political communities on Reddit over the period spanning from the 2016 presidential campaign to the 2022 mid-term elections. WARNING: Potentially sensitive political content.

2022

pdf bib
Dictionary-Assisted Supervised Contrastive Learning
Patrick Y. Wu | Richard Bonneau | Joshua A. Tucker | Jonathan Nagler
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Text analysis in the social sciences often involves using specialized dictionaries to reason with abstract concepts, such as perceptions about the economy or abuse on social media. These dictionaries allow researchers to impart domain knowledge and note subtle usages of words relating to a concept(s) of interest. We introduce the dictionary-assisted supervised contrastive learning (DASCL) objective, allowing researchers to leverage specialized dictionaries when fine-tuning pretrained language models. The text is first keyword simplified: a common, fixed token replaces any word in the corpus that appears in the dictionary(ies) relevant to the concept of interest. During fine-tuning, a supervised contrastive objective draws closer the embeddings of the original and keyword-simplified texts of the same class while pushing further apart the embeddings of different classes. The keyword-simplified texts of the same class are more textually similar than their original text counterparts, which additionally draws the embeddings of the same class closer together. Combining DASCL and cross-entropy improves classification performance metrics in few-shot learning settings and social science applications compared to using cross-entropy alone and alternative contrastive and data augmentation methods.