Patrizio Bellan
2024
Building Certified Medical Chatbots: Overcoming Unstructured Data Limitations with Modular RAG
Leonardo Sanna
|
Patrizio Bellan
|
Simone Magnolini
|
Marina Segala
|
Saba Ghanbari Haez
|
Monica Consolandi
|
Mauro Dragoni
Proceedings of the First Workshop on Patient-Oriented Language Processing (CL4Health) @ LREC-COLING 2024
Creating a certified conversational agent poses several issues. The need to manage fine-grained information delivery and the necessity to provide reliable medical information requires a notable effort, especially in dataset preparation. In this paper, we investigate the challenges of building a certified medical chatbot in Italian that provides information about pregnancy and early childhood. We show some negative initial results regarding the possibility of creating a certified conversational agent within the RASA framework starting from unstructured data. Finally, we propose a modular RAG model to implement a Large Language Model in a certified context, overcoming data limitations and enabling data collection on actual conversations.
Search
Fix data
Co-authors
- Monica Consolandi 1
- Mauro Dragoni 1
- Saba Ghanbari Haez 1
- Simone Magnolini 1
- Leonardo Sanna 1
- show all...