Paul Jones


2017

pdf bib
A Hybrid CNN-RNN Alignment Model for Phrase-Aware Sentence Classification
Shiou Tian Hsu | Changsung Moon | Paul Jones | Nagiza Samatova
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

The success of sentence classification often depends on understanding both the syntactic and semantic properties of word-phrases. Recent progress on this task has been based on exploiting the grammatical structure of sentences but often this structure is difficult to parse and noisy. In this paper, we propose a structure-independent ‘Gated Representation Alignment’ (GRA) model that blends a phrase-focused Convolutional Neural Network (CNN) approach with sequence-oriented Recurrent Neural Network (RNN). Our novel alignment mechanism allows the RNN to selectively include phrase information in a word-by-word sentence representation, and to do this without awareness of the syntactic structure. An empirical evaluation of GRA shows higher prediction accuracy (up to 4.6%) of fine-grained sentiment ratings, when compared to other structure-independent baselines. We also show comparable results to several structure-dependent methods. Finally, we analyzed the effect of our alignment mechanism and found that this is critical to the effectiveness of the CNN-RNN hybrid.