Paul Pu Liang


pdf bib
Nano: Nested Human-in-the-Loop Reward Learning for Few-shot Language Model Control
Xiang Fan | Yiwei Lyu | Paul Pu Liang | Ruslan Salakhutdinov | Louis-Philippe Morency
Findings of the Association for Computational Linguistics: ACL 2023

Pretrained language models have demonstrated extraordinary capabilities in language generation. However, real-world tasks often require controlling the distribution of generated text in order to mitigate bias, promote fairness, and achieve personalization. Existing techniques for controlling the distribution of generated text only work with quantified distributions, which require pre-defined categories, proportions of the distribution, or an existing corpus following the desired distributions. However, many important distributions, such as personal preferences, are unquantified. In this work, we tackle the problem of generating text following arbitrary distributions (quantified and unquantified) by proposing NANO, a few-shot human-in-the-loop training algorithm that continuously learns from human feedback. NANO achieves state-of-the-art results on single topic/attribute as well as quantified distribution control compared to previous works. We also show that NANO is able to learn unquantified distributions, achieves personalization, and captures differences between different individuals’ personal preferences with high sample efficiency.

pdf bib
Cross-modal Attention Congruence Regularization for Vision-Language Relation Alignment
Rohan Pandey | Rulin Shao | Paul Pu Liang | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., ‘mug in grass’) with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the language attention from ‘mug’ to ‘grass’ (capturing the semantic relation ‘in’) to match the visual attention from the mug to the grass (capturing the corresponding physical relation). Tokens and their corresponding objects are softly identified using a weighted mean of cross-modal attention. We prove that this notion of soft cross-modal equivalence is equivalent to enforcing congruence between vision and language attention matrices under a ‘change of basis’ provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to fine-tune UNITER and improve its Winoground Group score by 5.75 points.

pdf bib
Language Models Get a Gender Makeover: Mitigating Gender Bias with Few-Shot Data Interventions
Himanshu Thakur | Atishay Jain | Praneetha Vaddamanu | Paul Pu Liang | Louis-Philippe Morency
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Societal biases present in pre-trained large language models are a critical issue as these models have been shown to propagate biases in countless downstream applications, rendering them unfair towards specific groups of people. Since large-scale retraining of these models from scratch is both time and compute-expensive, a variety of approaches have been previously proposed that de-bias a pre-trained model. While the majority of current state-of-the-art debiasing methods focus on changes to the training regime, in this paper, we propose data intervention strategies as a powerful yet simple technique to reduce gender bias in pre-trained models. Specifically, we empirically show that by fine-tuning a pre-trained model on only 10 debiased (intervened) training examples, the tendency to favor any gender is significantly reduced. Since our proposed method only needs a few training examples, we argue that our few-shot de-biasing approach is highly feasible and practical. Through extensive experimentation, we show that our de-biasing technique performs better than competitive state-of-the-art baselines with minimal loss in language modeling ability.


pdf bib
Uncertainty Quantification with Pre-trained Language Models: A Large-Scale Empirical Analysis
Yuxin Xiao | Paul Pu Liang | Umang Bhatt | Willie Neiswanger | Ruslan Salakhutdinov | Louis-Philippe Morency
Findings of the Association for Computational Linguistics: EMNLP 2022

Pre-trained language models (PLMs) have gained increasing popularity due to their compelling prediction performance in diverse natural language processing (NLP) tasks. When formulating a PLM-based prediction pipeline for NLP tasks, it is also crucial for the pipeline to minimize the calibration error, especially in safety-critical applications. That is, the pipeline should reliably indicate when we can trust its predictions. In particular, there are various considerations behind the pipeline: (1) the choice and (2) the size of PLM, (3) the choice of uncertainty quantifier, (4) the choice of fine-tuning loss, and many more. Although prior work has looked into some of these considerations, they usually draw conclusions based on a limited scope of empirical studies. There still lacks a holistic analysis on how to compose a well-calibrated PLM-based prediction pipeline. To fill this void, we compare a wide range of popular options for each consideration based on three prevalent NLP classification tasks and the setting of domain shift. In response, we recommend the following: (1) use ELECTRA for PLM encoding, (2) use larger PLMs if possible, (3) use Temp Scaling as the uncertainty quantifier, and (4) use Focal Loss for fine-tuning.

pdf bib
Tutorial on Multimodal Machine Learning
Louis-Philippe Morency | Paul Pu Liang | Amir Zadeh
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts

Multimodal machine learning involves integrating and modeling information from multiple heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world applications in multimedia, affective computing, robotics, finance, HCI, and healthcare. This tutorial, building upon a new edition of a survey paper on multimodal ML as well as previously-given tutorials and academic courses, will describe an updated taxonomy on multimodal machine learning synthesizing its core technical challenges and major directions for future research.

pdf bib
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Sebastian Gehrmann | Abhik Bhattacharjee | Abinaya Mahendiran | Alex Wang | Alexandros Papangelis | Aman Madaan | Angelina Mcmillan-major | Anna Shvets | Ashish Upadhyay | Bernd Bohnet | Bingsheng Yao | Bryan Wilie | Chandra Bhagavatula | Chaobin You | Craig Thomson | Cristina Garbacea | Dakuo Wang | Daniel Deutsch | Deyi Xiong | Di Jin | Dimitra Gkatzia | Dragomir Radev | Elizabeth Clark | Esin Durmus | Faisal Ladhak | Filip Ginter | Genta Indra Winata | Hendrik Strobelt | Hiroaki Hayashi | Jekaterina Novikova | Jenna Kanerva | Jenny Chim | Jiawei Zhou | Jordan Clive | Joshua Maynez | João Sedoc | Juraj Juraska | Kaustubh Dhole | Khyathi Raghavi Chandu | Laura Perez Beltrachini | Leonardo F . R. Ribeiro | Lewis Tunstall | Li Zhang | Mahim Pushkarna | Mathias Creutz | Michael White | Mihir Sanjay Kale | Moussa Kamal Eddine | Nico Daheim | Nishant Subramani | Ondrej Dusek | Paul Pu Liang | Pawan Sasanka Ammanamanchi | Qi Zhu | Ratish Puduppully | Reno Kriz | Rifat Shahriyar | Ronald Cardenas | Saad Mahamood | Salomey Osei | Samuel Cahyawijaya | Sanja Štajner | Sebastien Montella | Shailza Jolly | Simon Mille | Tahmid Hasan | Tianhao Shen | Tosin Adewumi | Vikas Raunak | Vipul Raheja | Vitaly Nikolaev | Vivian Tsai | Yacine Jernite | Ying Xu | Yisi Sang | Yixin Liu | Yufang Hou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.


pdf bib
StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer
Yiwei Lyu | Paul Pu Liang | Hai Pham | Eduard Hovy | Barnabás Póczos | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e.g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence. In this paper, we introduce a large-scale benchmark, StylePTB, with (1) paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text, as well as (2) compositions of multiple transfers which allow modeling of fine-grained stylistic changes as building blocks for more complex, high-level transfers. By benchmarking existing methods on StylePTB, we find that they struggle to model fine-grained changes and have an even more difficult time composing multiple styles. As a result, StylePTB brings novel challenges that we hope will encourage future research in controllable text style transfer, compositional models, and learning disentangled representations. Solving these challenges would present important steps towards controllable text generation.

pdf bib
Proceedings of the Third Workshop on Multimodal Artificial Intelligence
Amir Zadeh | Louis-Philippe Morency | Paul Pu Liang | Candace Ross | Ruslan Salakhutdinov | Soujanya Poria | Erik Cambria | Kelly Shi
Proceedings of the Third Workshop on Multimodal Artificial Intelligence

pdf bib
Learning Language and Multimodal Privacy-Preserving Markers of Mood from Mobile Data
Paul Pu Liang | Terrance Liu | Anna Cai | Michal Muszynski | Ryo Ishii | Nick Allen | Randy Auerbach | David Brent | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care. The ability to accurately and efficiently predict mood from easily collectible data has several important implications for the early detection, intervention, and treatment of mental health disorders. One promising data source to help monitor human behavior is daily smartphone usage. However, care must be taken to summarize behaviors without identifying the user through personal (e.g., personally identifiable information) or protected (e.g., race, gender) attributes. In this paper, we study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors. Using computational models, we find that language and multimodal representations of mobile typed text (spanning typed characters, words, keystroke timings, and app usage) are predictive of daily mood. However, we find that models trained to predict mood often also capture private user identities in their intermediate representations. To tackle this problem, we evaluate approaches that obfuscate user identity while remaining predictive. By combining multimodal representations with privacy-preserving learning, we are able to push forward the performance-privacy frontier.


pdf bib
Towards Debiasing Sentence Representations
Paul Pu Liang | Irene Mengze Li | Emily Zheng | Yao Chong Lim | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.

pdf bib
Second Grand-Challenge and Workshop on Multimodal Language (Challenge-HML)
Amir Zadeh | Louis-Philippe Morency | Paul Pu Liang | Soujanya Poria
Second Grand-Challenge and Workshop on Multimodal Language (Challenge-HML)

pdf bib
CMU-MOSEAS: A Multimodal Language Dataset for Spanish, Portuguese, German and French
AmirAli Bagher Zadeh | Yansheng Cao | Simon Hessner | Paul Pu Liang | Soujanya Poria | Louis-Philippe Morency
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Modeling multimodal language is a core research area in natural language processing. While languages such as English have relatively large multimodal language resources, other widely spoken languages across the globe have few or no large-scale datasets in this area. This disproportionately affects native speakers of languages other than English. As a step towards building more equitable and inclusive multimodal systems, we introduce the first large-scale multimodal language dataset for Spanish, Portuguese, German and French. The proposed dataset, called CMU-MOSEAS (CMU Multimodal Opinion Sentiment, Emotions and Attributes), is the largest of its kind with 40,000 total labelled sentences. It covers a diverse set topics and speakers, and carries supervision of 20 labels including sentiment (and subjectivity), emotions, and attributes. Our evaluations on a state-of-the-art multimodal model demonstrates that CMU-MOSEAS enables further research for multilingual studies in multimodal language.


pdf bib
Learning Representations from Imperfect Time Series Data via Tensor Rank Regularization
Paul Pu Liang | Zhun Liu | Yao-Hung Hubert Tsai | Qibin Zhao | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

There has been an increased interest in multimodal language processing including multimodal dialog, question answering, sentiment analysis, and speech recognition. However, naturally occurring multimodal data is often imperfect as a result of imperfect modalities, missing entries or noise corruption. To address these concerns, we present a regularization method based on tensor rank minimization. Our method is based on the observation that high-dimensional multimodal time series data often exhibit correlations across time and modalities which leads to low-rank tensor representations. However, the presence of noise or incomplete values breaks these correlations and results in tensor representations of higher rank. We design a model to learn such tensor representations and effectively regularize their rank. Experiments on multimodal language data show that our model achieves good results across various levels of imperfection.

pdf bib
Multimodal Transformer for Unaligned Multimodal Language Sequences
Yao-Hung Hubert Tsai | Shaojie Bai | Paul Pu Liang | J. Zico Kolter | Louis-Philippe Morency | Ruslan Salakhutdinov
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Human language is often multimodal, which comprehends a mixture of natural language, facial gestures, and acoustic behaviors. However, two major challenges in modeling such multimodal human language time-series data exist: 1) inherent data non-alignment due to variable sampling rates for the sequences from each modality; and 2) long-range dependencies between elements across modalities. In this paper, we introduce the Multimodal Transformer (MulT) to generically address the above issues in an end-to-end manner without explicitly aligning the data. At the heart of our model is the directional pairwise crossmodal attention, which attends to interactions between multimodal sequences across distinct time steps and latently adapt streams from one modality to another. Comprehensive experiments on both aligned and non-aligned multimodal time-series show that our model outperforms state-of-the-art methods by a large margin. In addition, empirical analysis suggests that correlated crossmodal signals are able to be captured by the proposed crossmodal attention mechanism in MulT.

pdf bib
Strong and Simple Baselines for Multimodal Utterance Embeddings
Paul Pu Liang | Yao Chong Lim | Yao-Hung Hubert Tsai | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Human language is a rich multimodal signal consisting of spoken words, facial expressions, body gestures, and vocal intonations. Learning representations for these spoken utterances is a complex research problem due to the presence of multiple heterogeneous sources of information. Recent advances in multimodal learning have followed the general trend of building more complex models that utilize various attention, memory and recurrent components. In this paper, we propose two simple but strong baselines to learn embeddings of multimodal utterances. The first baseline assumes a conditional factorization of the utterance into unimodal factors. Each unimodal factor is modeled using the simple form of a likelihood function obtained via a linear transformation of the embedding. We show that the optimal embedding can be derived in closed form by taking a weighted average of the unimodal features. In order to capture richer representations, our second baseline extends the first by factorizing into unimodal, bimodal, and trimodal factors, while retaining simplicity and efficiency during learning and inference. From a set of experiments across two tasks, we show strong performance on both supervised and semi-supervised multimodal prediction, as well as significant (10 times) speedups over neural models during inference. Overall, we believe that our strong baseline models offer new benchmarking options for future research in multimodal learning.


pdf bib
Multimodal Language Analysis with Recurrent Multistage Fusion
Paul Pu Liang | Ziyin Liu | AmirAli Bagher Zadeh | Louis-Philippe Morency
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Computational modeling of human multimodal language is an emerging research area in natural language processing spanning the language, visual and acoustic modalities. Comprehending multimodal language requires modeling not only the interactions within each modality (intra-modal interactions) but more importantly the interactions between modalities (cross-modal interactions). In this paper, we propose the Recurrent Multistage Fusion Network (RMFN) which decomposes the fusion problem into multiple stages, each of them focused on a subset of multimodal signals for specialized, effective fusion. Cross-modal interactions are modeled using this multistage fusion approach which builds upon intermediate representations of previous stages. Temporal and intra-modal interactions are modeled by integrating our proposed fusion approach with a system of recurrent neural networks. The RMFN displays state-of-the-art performance in modeling human multimodal language across three public datasets relating to multimodal sentiment analysis, emotion recognition, and speaker traits recognition. We provide visualizations to show that each stage of fusion focuses on a different subset of multimodal signals, learning increasingly discriminative multimodal representations.

pdf bib
Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph
AmirAli Bagher Zadeh | Paul Pu Liang | Soujanya Poria | Erik Cambria | Louis-Philippe Morency
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Analyzing human multimodal language is an emerging area of research in NLP. Intrinsically this language is multimodal (heterogeneous), sequential and asynchronous; it consists of the language (words), visual (expressions) and acoustic (paralinguistic) modalities all in the form of asynchronous coordinated sequences. From a resource perspective, there is a genuine need for large scale datasets that allow for in-depth studies of this form of language. In this paper we introduce CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI), the largest dataset of sentiment analysis and emotion recognition to date. Using data from CMU-MOSEI and a novel multimodal fusion technique called the Dynamic Fusion Graph (DFG), we conduct experimentation to exploit how modalities interact with each other in human multimodal language. Unlike previously proposed fusion techniques, DFG is highly interpretable and achieves competative performance when compared to the previous state of the art.

pdf bib
Efficient Low-rank Multimodal Fusion With Modality-Specific Factors
Zhun Liu | Ying Shen | Varun Bharadhwaj Lakshminarasimhan | Paul Pu Liang | AmirAli Bagher Zadeh | Louis-Philippe Morency
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal research is an emerging field of artificial intelligence, and one of the main research problems in this field is multimodal fusion. The fusion of multimodal data is the process of integrating multiple unimodal representations into one compact multimodal representation. Previous research in this field has exploited the expressiveness of tensors for multimodal representation. However, these methods often suffer from exponential increase in dimensions and in computational complexity introduced by transformation of input into tensor. In this paper, we propose the Low-rank Multimodal Fusion method, which performs multimodal fusion using low-rank tensors to improve efficiency. We evaluate our model on three different tasks: multimodal sentiment analysis, speaker trait analysis, and emotion recognition. Our model achieves competitive results on all these tasks while drastically reducing computational complexity. Additional experiments also show that our model can perform robustly for a wide range of low-rank settings, and is indeed much more efficient in both training and inference compared to other methods that utilize tensor representations.

pdf bib
Proceedings of Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML)
Amir Zadeh | Paul Pu Liang | Louis-Philippe Morency | Soujanya Poria | Erik Cambria | Stefan Scherer
Proceedings of Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML)

pdf bib
Seq2Seq2Sentiment: Multimodal Sequence to Sequence Models for Sentiment Analysis
Hai Pham | Thomas Manzini | Paul Pu Liang | Barnabás Poczós
Proceedings of Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML)

Multimodal machine learning is a core research area spanning the language, visual and acoustic modalities. The central challenge in multimodal learning involves learning representations that can process and relate information from multiple modalities. In this paper, we propose two methods for unsupervised learning of joint multimodal representations using sequence to sequence (Seq2Seq) methods: a Seq2Seq Modality Translation Model and a Hierarchical Seq2Seq Modality Translation Model. We also explore multiple different variations on the multimodal inputs and outputs of these seq2seq models. Our experiments on multimodal sentiment analysis using the CMU-MOSI dataset indicate that our methods learn informative multimodal representations that outperform the baselines and achieve improved performance on multimodal sentiment analysis, specifically in the Bimodal case where our model is able to improve F1 Score by twelve points. We also discuss future directions for multimodal Seq2Seq methods.