Transformer-based Language Models have become ubiquitous in Natural Language Processing (NLP) due to their impressive performance on various tasks. However, expensive training as well as inference remains a significant impediment to their widespread applicability. While enforcing sparsity at various levels of the model architecture has found promise in addressing scaling and efficiency issues, there remains a disconnect between how sparsity affects network topology. Inspired by brain neuronal networks, we explore sparsity approaches through the lens of network topology. Specifically, we exploit mechanisms seen in biological networks, such as preferential attachment and redundant synapse pruning, and show that principled, model-agnostic sparsity approaches are performant and efficient across diverse NLP tasks, spanning both classification (such as natural language inference) and generation (summarization, machine translation), despite our sole objective not being optimizing performance. NeuroPrune is competitive with (or sometimes superior to) baselines on performance and can be up to 10x faster in terms of training time for a given level of sparsity, simultaneously exhibiting measurable improvements in inference time in many cases.
Large language models are first pre-trained on trillions of tokens and then instruction-tuned or aligned to specific preferences. While pre-training remains out of reach for most researchers due to the compute required, fine-tuning has become affordable thanks to parameter-efficient methods such as LoRA and QLoRA. Alignment is known to be sensitive to the many factors involved, including the quantity and quality of data, the alignment method, and the adapter rank. However, there has not yet been an extensive study of their effect on downstream performance. To address this gap, we conduct an in-depth investigation of the impact of popular choices for three crucial axes: (i) the alignment dataset (HH-RLHF and BeaverTails), (ii) the alignment technique (SFT and DPO), and (iii) the model (LLaMA-1, Vicuna-v1.3, Mistral-7b, and Mistral-7b-Instruct). Our extensive setup spanning over 300 experiments reveals consistent trends and unexpected findings. We observe how more informative data helps with preference alignment, cases where supervised fine-tuning outperforms preference optimization, and how aligning to a distinct preference boosts performance on downstream tasks. Through our in-depth analyses, we put forward key guidelines to help researchers perform more effective parameter-efficient LLM alignment.
In this work we propose a novel end-to-end multi-stage Knowledge Graph (KG) generation system from textual inputs, separating the overall process into two stages. The graph nodes are generated first using pretrained language model, followed by a simple edge construction head, enabling efficient KG extraction from the text. For each stage we consider several architectural choices that can be used depending on the available training resources. We evaluated the model on a recent WebNLG 2020 Challenge dataset, matching the state-of-the-art performance on text-to-RDF generation task, as well as on New York Times (NYT) and a large-scale TekGen datasets, showing strong overall performance, outperforming the existing baselines. We believe that the proposed system can serve as a viable KG construction alternative to the existing linearization or sampling-based graph generation approaches.
Automatic construction of relevant Knowledge Bases (KBs) from text, and generation of semantically meaningful text from KBs are both long-standing goals in Machine Learning. In this paper, we present ReGen, a bidirectional generation of text and graph leveraging Reinforcement Learning to improve performance. Graph linearization enables us to re-frame both tasks as a sequence to sequence generation problem regardless of the generative direction, which in turn allows the use of Reinforcement Learning for sequence training where the model itself is employed as its own critic leading to Self-Critical Sequence Training (SCST). We present an extensive investigation demonstrating that the use of RL via SCST benefits graph and text generation on WebNLG+ 2020 and TekGen datasets. Our system provides state-of-the-art results on WebNLG+ 2020 by significantly improving upon published results from the WebNLG 2020+ Challenge for both text-to-graph and graph-to-text generation tasks. More details at https://github.com/IBM/regen.
Generative feature matching network (GFMN) is an approach for training state-of-the-art implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, class-conditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer.
In this work, we present a dual learning approach for unsupervised text to path and path to text transfers in Commonsense Knowledge Bases (KBs). We investigate the impact of weak supervision by creating a weakly supervised dataset and show that even a slight amount of supervision can significantly improve the model performance and enable better-quality transfers. We examine different model architectures, and evaluation metrics, proposing a novel Commonsense KB completion metric tailored for generative models. Extensive experimental results show that the proposed method compares very favorably to the existing baselines. This approach is a viable step towards a more advanced system for automatic KB construction/expansion and the reverse operation of KB conversion to coherent textual descriptions.