Pedro Ortiz Suarez

Also published as: Pedro Javier Ortiz Suárez, Pedro Ortiz Suarez


2022

pdf bib
Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Julia Kreutzer | Isaac Caswell | Lisa Wang | Ahsan Wahab | Daan van Esch | Nasanbayar Ulzii-Orshikh | Allahsera Tapo | Nishant Subramani | Artem Sokolov | Claytone Sikasote | Monang Setyawan | Supheakmungkol Sarin | Sokhar Samb | Benoît Sagot | Clara Rivera | Annette Rios | Isabel Papadimitriou | Salomey Osei | Pedro Ortiz Suarez | Iroro Orife | Kelechi Ogueji | Andre Niyongabo Rubungo | Toan Q. Nguyen | Mathias Müller | André Müller | Shamsuddeen Hassan Muhammad | Nanda Muhammad | Ayanda Mnyakeni | Jamshidbek Mirzakhalov | Tapiwanashe Matangira | Colin Leong | Nze Lawson | Sneha Kudugunta | Yacine Jernite | Mathias Jenny | Orhan Firat | Bonaventure F. P. Dossou | Sakhile Dlamini | Nisansa de Silva | Sakine Çabuk Ballı | Stella Biderman | Alessia Battisti | Ahmed Baruwa | Ankur Bapna | Pallavi Baljekar | Israel Abebe Azime | Ayodele Awokoya | Duygu Ataman | Orevaoghene Ahia | Oghenefego Ahia | Sweta Agrawal | Mofetoluwa Adeyemi
Transactions of the Association for Computational Linguistics, Volume 10

With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, Web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.

pdf bib
BERTrade: Using Contextual Embeddings to Parse Old French
Loïc Grobol | Mathilde Regnault | Pedro Ortiz Suarez | Benoît Sagot | Laurent Romary | Benoit Crabbé
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The successes of contextual word embeddings learned by training large-scale language models, while remarkable, have mostly occurred for languages where significant amounts of raw texts are available and where annotated data in downstream tasks have a relatively regular spelling. Conversely, it is not yet completely clear if these models are also well suited for lesser-resourced and more irregular languages. We study the case of Old French, which is in the interesting position of having relatively limited amount of available raw text, but enough annotated resources to assess the relevance of contextual word embedding models for downstream NLP tasks. In particular, we use POS-tagging and dependency parsing to evaluate the quality of such models in a large array of configurations, including models trained from scratch from small amounts of raw text and models pre-trained on other languages but fine-tuned on Medieval French data.

pdf bib
From FreEM to D’AlemBERT: a Large Corpus and a Language Model for Early Modern French
Simon Gabay | Pedro Ortiz Suarez | Alexandre Bartz | Alix Chagué | Rachel Bawden | Philippe Gambette | Benoît Sagot
Proceedings of the Thirteenth Language Resources and Evaluation Conference

anguage models for historical states of language are becoming increasingly important to allow the optimal digitisation and analysis of old textual sources. Because these historical states are at the same time more complex to process and more scarce in the corpora available, this paper presents recent efforts to overcome this difficult situation. These efforts include producing a corpus, creating the model, and evaluating it with an NLP task currently used by scholars in other ongoing projects.

pdf bib
Towards a Cleaner Document-Oriented Multilingual Crawled Corpus
Julien Abadji | Pedro Ortiz Suarez | Laurent Romary | Benoît Sagot
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The need for large corpora raw corpora has dramatically increased in recent years with the introduction of transfer learning and semi-supervised learning methods to Natural Language Processing. And while there have been some recent attempts to manually curate the amount of data necessary to train large language models, the main way to obtain this data is still through automatic web crawling. In this paper we take the existing multilingual web corpus OSCAR and its pipeline Ungoliant that extracts and classifies data from Common Crawl at the line level, and propose a set of improvements and automatic annotations in order to produce a new document-oriented version of OSCAR that could prove more suitable to pre-train large generative language models as well as hopefully other applications in Natural Language Processing and Digital Humanities.

pdf bib
Le projet FREEM : ressources, outils et enjeux pour l’étude du français d’Ancien Régime (The F RE EM project: Resources, tools and challenges for the study of Ancien Régime French)
Simon Gabay | Pedro Ortiz Suarez | Rachel Bawden | Alexandre Bartz | Philippe Gambette | Benoît Sagot
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

En dépit de leur qualité certaine, les ressources et outils disponibles pour l’analyse du français d’Ancien Régime ne sont plus à même de répondre aux enjeux de la recherche en linguistique et en littérature pour cette période. Après avoir précisément défini le cadre chronologique retenu, nous présentons les corpus mis à disposition et les résultats obtenus avec eux pour plusieurs tâches de TAL fondamentales à l’étude de la langue et de la littérature.

2020

pdf bib
Building a User-Generated Content North-African Arabizi Treebank: Tackling Hell
Djamé Seddah | Farah Essaidi | Amal Fethi | Matthieu Futeral | Benjamin Muller | Pedro Javier Ortiz Suárez | Benoît Sagot | Abhishek Srivastava
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce the first treebank for a romanized user-generated content variety of Algerian, a North-African Arabic dialect known for its frequent usage of code-switching. Made of 1500 sentences, fully annotated in morpho-syntax and Universal Dependency syntax, with full translation at both the word and the sentence levels, this treebank is made freely available. It is supplemented with 50k unlabeled sentences collected from Common Crawl and web-crawled data using intensive data-mining techniques. Preliminary experiments demonstrate its usefulness for POS tagging and dependency parsing. We believe that what we present in this paper is useful beyond the low-resource language community. This is the first time that enough unlabeled and annotated data is provided for an emerging user-generated content dialectal language with rich morphology and code switching, making it an challenging test-bed for most recent NLP approaches.

pdf bib
A Monolingual Approach to Contextualized Word Embeddings for Mid-Resource Languages
Pedro Javier Ortiz Suárez | Laurent Romary | Benoît Sagot
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We use the multilingual OSCAR corpus, extracted from Common Crawl via language classification, filtering and cleaning, to train monolingual contextualized word embeddings (ELMo) for five mid-resource languages. We then compare the performance of OSCAR-based and Wikipedia-based ELMo embeddings for these languages on the part-of-speech tagging and parsing tasks. We show that, despite the noise in the Common-Crawl-based OSCAR data, embeddings trained on OSCAR perform much better than monolingual embeddings trained on Wikipedia. They actually equal or improve the current state of the art in tagging and parsing for all five languages. In particular, they also improve over multilingual Wikipedia-based contextual embeddings (multilingual BERT), which almost always constitutes the previous state of the art, thereby showing that the benefit of a larger, more diverse corpus surpasses the cross-lingual benefit of multilingual embedding architectures.

pdf bib
CamemBERT: a Tasty French Language Model
Louis Martin | Benjamin Muller | Pedro Javier Ortiz Suárez | Yoann Dupont | Laurent Romary | Éric de la Clergerie | Djamé Seddah | Benoît Sagot
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models –in all languages except English– very limited. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for other languages, taking French as an example and evaluating our language models on part-of-speech tagging, dependency parsing, named entity recognition and natural language inference tasks. We show that the use of web crawled data is preferable to the use of Wikipedia data. More surprisingly, we show that a relatively small web crawled dataset (4GB) leads to results that are as good as those obtained using larger datasets (130+GB). Our best performing model CamemBERT reaches or improves the state of the art in all four downstream tasks.

pdf bib
French Contextualized Word-Embeddings with a sip of CaBeRnet: a New French Balanced Reference Corpus
Murielle Popa-Fabre | Pedro Javier Ortiz Suárez | Benoît Sagot | Éric de la Clergerie
Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora

This paper investigates the impact of different types and size of training corpora on language models. By asking the fundamental question of quality versus quantity, we compare four French corpora by pre-training four different ELMos and evaluating them on dependency parsing, POS-tagging and Named Entities Recognition downstream tasks. We present and asses the relevance of a new balanced French corpus, CaBeRnet, that features a representative range of language usage, including a balanced variety of genres (oral transcriptions, newspapers, popular magazines, technical reports, fiction, academic texts), in oral and written styles. We hypothesize that a linguistically representative corpus will allow the language models to be more efficient, and therefore yield better evaluation scores on different evaluation sets and tasks. This paper offers three main contributions: (1) two newly built corpora: (a) CaBeRnet, a French Balanced Reference Corpus and (b) CBT-fr a domain-specific corpus having both oral and written style in youth literature, (2) five versions of ELMo pre-trained on differently built corpora, and (3) a whole array of computational results on downstream tasks that deepen our understanding of the effects of corpus balance and register in NLP evaluation.

pdf bib
Establishing a New State-of-the-Art for French Named Entity Recognition
Pedro Javier Ortiz Suárez | Yoann Dupont | Benjamin Muller | Laurent Romary | Benoît Sagot
Proceedings of the Twelfth Language Resources and Evaluation Conference

The French TreeBank developed at the University Paris 7 is the main source of morphosyntactic and syntactic annotations for French. However, it does not include explicit information related to named entities, which are among the most useful information for several natural language processing tasks and applications. Moreover, no large-scale French corpus with named entity annotations contain referential information, which complement the type and the span of each mention with an indication of the entity it refers to. We have manually annotated the French TreeBank with such information, after an automatic pre-annotation step. We sketch the underlying annotation guidelines and we provide a few figures about the resulting annotations.

pdf bib
Les modèles de langue contextuels Camembert pour le français : impact de la taille et de l’hétérogénéité des données d’entrainement (C AMEM BERT Contextual Language Models for French: Impact of Training Data Size and Heterogeneity )
Louis Martin | Benjamin Muller | Pedro Javier Ortiz Suárez | Yoann Dupont | Laurent Romary | Éric Villemonte de la Clergerie | Benoît Sagot | Djamé Seddah
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Les modèles de langue neuronaux contextuels sont désormais omniprésents en traitement automatique des langues. Jusqu’à récemment, la plupart des modèles disponibles ont été entraînés soit sur des données en anglais, soit sur la concaténation de données dans plusieurs langues. L’utilisation pratique de ces modèles — dans toutes les langues sauf l’anglais — était donc limitée. La sortie récente de plusieurs modèles monolingues fondés sur BERT (Devlin et al., 2019), notamment pour le français, a démontré l’intérêt de ces modèles en améliorant l’état de l’art pour toutes les tâches évaluées. Dans cet article, à partir d’expériences menées sur CamemBERT (Martin et al., 2019), nous montrons que l’utilisation de données à haute variabilité est préférable à des données plus uniformes. De façon plus surprenante, nous montrons que l’utilisation d’un ensemble relativement petit de données issues du web (4Go) donne des résultats aussi bons que ceux obtenus à partir d’ensembles de données plus grands de deux ordres de grandeurs (138Go).