Current instruction-tuned language models are exclusively trained with textual preference data and thus may not be aligned to the unique requirements of other modalities, such as speech. To better align language models with the speech domain, we explore i) prompting strategies based on radio-industry best practices and ii) preference learning using a novel speech-based preference data of 20K samples collected by annotators who listen to response pairs. Both human and automatic evaluation show that both prompting and preference learning increase the speech-suitability of popular instruction tuned LLMs. More interestingly, we show that these methods are additive; combining them achieves the best win rates in head-to-head comparison, resulting in responses that are preferred or tied to the base model in 76.2% of comparisons on average. Lastly, we share lexical, syntactical, and qualitative analyses that elicit how our studied methods differ with baselines in generating more speech-suitable responses.
The efficacy of neural “retrieve and generate” systems is well established for question answering (QA) over unstructured text. Recent efforts seek to extend this approach to knowledge graph (KG) QA by converting structured triples to unstructured text. However, the relevance of KG triples retrieved by these systems limits their accuracy. In this paper, we improve the relevance of retrieved triples using a carefully designed re-ranker. Specifically, our pipeline (i) retrieves over documents of triples grouped by entity, (ii) re-ranks triples from these documents with context: triples in the 1-hop neighborhood of the documents’ subject entity, and (iii) generates an answer from highly relevant re-ranked triples. To train our re-ranker, we propose a novel “triple-level” labeling strategy that infers fine-grained labels and shows that these significantly improve the relevance of retrieved information. We show that the resulting “retrieve, re-rank, and generate” pipeline significantly improves upon prior KGQA systems, achieving a new state-of-the-art on FreebaseQA by 5.56% Exact Match. We perform multiple ablations that reveal the distinct benefits of our contextual re-ranker and labeling strategy and conclude with a case study that highlights opportunities for future works.
Humans can seamlessly reason with circumstantial preconditions of commonsense knowledge. We understand that a glass is used for drinking water, unless the glass is broken or the water is toxic. Despite state-of-the-art (SOTA) language models’ (LMs) impressive performance on inferring commonsense knowledge, it is unclear whether they understand the circumstantial preconditions. To address this gap, we propose a novel challenge of reasoning with circumstantial preconditions. We collect a dataset, called PaCo, consisting of 12.4 thousand preconditions of commonsense statements expressed in natural language. Based on this dataset, we create three canonical evaluation tasks and use them to examine the capability of existing LMs to understand situational preconditions. Our results reveal a 10-30% gap between machine and human performance on our tasks, which shows that reasoning with preconditions is an open challenge.
Controlled table-to-text generation seeks to generate natural language descriptions for highlighted subparts of a table. Previous SOTA systems still employ a sequence-to-sequence generation method, which merely captures the table as a linear structure and is brittle when table layouts change. We seek to go beyond this paradigm by (1) effectively expressing the relations of content pieces in the table, and (2) making our model robust to content-invariant structural transformations. Accordingly, we propose an equivariance learning framework, which encodes tables with a structure-aware self-attention mechanism. This prunes the full self-attention structure into an order-invariant graph attention that captures the connected graph structure of cells belonging to the same row or column, and it differentiates between relevant cells and irrelevant cells from the structural perspective. Our framework also modifies the positional encoding mechanism to preserve the relative position of tokens in the same cell but enforce position invariance among different cells. Our technology is free to be plugged into existing table-to-text generation models, and has improved T5-based models to offer better performance on ToTTo and HiTab. Moreover, on a harder version of ToTTo, we preserve promising performance, while previous SOTA systems, even with transformation-based data augmentation, have seen significant performance drops.
Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover, training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark.
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a comprehensive taxonomy of tasks and methods. We break down the subjective notion of numeracy into 7 subtasks, arranged along two dimensions: granularity (exact vs approximate) and units (abstract vs grounded). We analyze the myriad representational choices made by over a dozen previously published number encoders and decoders. We synthesize best practices for representing numbers in text and articulate a vision for holistic numeracy in NLP, comprised of design trade-offs and a unified evaluation.
Commonsense question answering (QA) requires background knowledge which is not explicitly stated in a given context. Prior works use commonsense knowledge graphs (KGs) to obtain this knowledge for reasoning. However, relying entirely on these KGs may not suffice, considering their limited coverage and the contextual dependence of their knowledge. In this paper, we augment a general commonsense QA framework with a knowledgeable path generator. By extrapolating over existing paths in a KG with a state-of-the-art language model, our generator learns to connect a pair of entities in text with a dynamic, and potentially novel, multi-hop relational path. Such paths can provide structured evidence for solving commonsense questions without fine-tuning the path generator. Experiments on two datasets show the superiority of our method over previous works which fully rely on knowledge from KGs (with up to 6% improvement in accuracy), across various amounts of training data. Further evaluation suggests that the generated paths are typically interpretable, novel, and relevant to the task.