Pei Ke


pdf bib
DecompEval: Evaluating Generated Texts as Unsupervised Decomposed Question Answering
Pei Ke | Fei Huang | Fei Mi | Yasheng Wang | Qun Liu | Xiaoyan Zhu | Minlie Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing evaluation metrics for natural language generation (NLG) tasks face the challenges on generalization ability and interpretability. Specifically, most of the well-performed metrics are required to train on evaluation datasets of specific NLG tasks and evaluation dimensions, which may cause over-fitting to task-specific datasets. Furthermore, existing metrics only provide an evaluation score for each dimension without revealing the evidence to interpret how this score is obtained. To deal with these challenges, we propose a simple yet effective metric called DecompEval. This metric formulates NLG evaluation as an instruction-style question answering task and utilizes instruction-tuned pre-trained language models (PLMs) without training on evaluation datasets, aiming to enhance the generalization ability. To make the evaluation process more interpretable, we decompose our devised instruction-style question about the quality of generated texts into the subquestions that measure the quality of each sentence. The subquestions with their answers generated by PLMs are then recomposed as evidence to obtain the evaluation result. Experimental results show that DecompEval achieves state-of-the-art performance in untrained metrics for evaluating text summarization and dialogue generation, which also exhibits strong dimension-level / task-level generalization ability and interpretability.

pdf bib
Click: Controllable Text Generation with Sequence Likelihood Contrastive Learning
Chujie Zheng | Pei Ke | Zheng Zhang | Minlie Huang
Findings of the Association for Computational Linguistics: ACL 2023

It has always been an important yet challenging problem to control language models to avoid generating texts with undesirable attributes, such as toxic language and unnatural repetition. We introduce Leo for controllable text generation, which needs no modification to the model architecture and facilitates out-of-the-box use of trained models. It employs a contrastive loss on sequence likelihood, which fundamentally decreases the generation probability of negative samples (i.e., generations with undesirable attributes). It also adopts a novel likelihood ranking-based strategy to construct contrastive samples from model generations. On the tasks of language detoxification, sentiment steering, and repetition reduction, we show that Leo outperforms strong baselines of controllable text generation and demonstrate the superiority of Leo’s sample construction strategy.

pdf bib
Unveiling the Implicit Toxicity in Large Language Models
Jiaxin Wen | Pei Ke | Hao Sun | Zhexin Zhang | Chengfei Li | Jinfeng Bai | Minlie Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use. While recent studies primarily focus on probing toxic outputs that can be easily detected with existing toxicity classifiers, we show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting. Moreover, we propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs. Specifically, we optimize the language model with a reward that prefers implicit toxic outputs to explicit toxic and non-toxic ones. Experiments on five widely-adopted toxicity classifiers demonstrate that the attack success rate can be significantly improved through RL fine-tuning. For instance, the RL-finetuned LLaMA-13B model achieves an attack success rate of 90.04% on BAD and 62.85% on Davinci003. Our findings suggest that LLMs pose a significant threat in generating undetectable implicit toxic outputs. We further show that fine-tuning toxicity classifiers on the annotated examples from our attacking method can effectively enhance their ability to detect LLM-generated implicit toxic language.

pdf bib
Directed Acyclic Transformer Pre-training for High-quality Non-autoregressive Text Generation
Fei Huang | Pei Ke | Minlie Huang
Transactions of the Association for Computational Linguistics, Volume 11

Non-AutoRegressive (NAR) text generation models have drawn much attention because of their significantly faster decoding speed and good generation quality in machine translation. However, in a wider range of text generation tasks, existing NAR models lack proper pre-training, making them still far behind the pre-trained autoregressive models. In this paper, we propose Pre-trained Directed Acyclic Transformer (PreDAT) and a novel pre-training task to promote prediction consistency in NAR generation. Experiments on five text generation tasks show that our PreDAT remarkably outperforms existing pre-trained NAR models (+4.2 score on average) and even achieves better results than pre-trained autoregressive baselines in n-gram-based metrics, along with 17 times speedup in throughput. Further analysis shows that PreDAT benefits from the unbiased prediction order that alleviates the error accumulation problem in autoregressive generation, which provides new insights into the advantages of NAR generation.1


pdf bib
CTRLEval: An Unsupervised Reference-Free Metric for Evaluating Controlled Text Generation
Pei Ke | Hao Zhou | Yankai Lin | Peng Li | Jie Zhou | Xiaoyan Zhu | Minlie Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing reference-free metrics have obvious limitations for evaluating controlled text generation models. Unsupervised metrics can only provide a task-agnostic evaluation result which correlates weakly with human judgments, whereas supervised ones may overfit task-specific data with poor generalization ability to other datasets. In this paper, we propose an unsupervised reference-free metric called CTRLEval, which evaluates controlled text generation from different aspects by formulating each aspect into multiple text infilling tasks. On top of these tasks, the metric assembles the generation probabilities from a pre-trained language model without any model training. Experimental results show that our metric has higher correlations with human judgments than other baselines, while obtaining better generalization of evaluating generated texts from different models and with different qualities.

pdf bib
Rethinking and Refining the Distinct Metric
Siyang Liu | Sahand Sabour | Yinhe Zheng | Pei Ke | Xiaoyan Zhu | Minlie Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Distinct is a widely used automatic metric for evaluating diversity in language generation tasks. However, we observed that the original approach to calculating distinct scores has evident biases that tend to assign higher penalties to longer sequences. We refine the calculation of distinct scores by scaling the number of distinct tokens based on their expectations. We provide both empirical and theoretical evidence to show that our method effectively removes the biases existing in the original distinct score. Our experiments show that our proposed metric, Expectation-Adjusted Distinct (EAD), correlates better with human judgment in evaluating response diversity.To assist future research, we provide an example implementation at

pdf bib
Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task Generalization
Yuxian Gu | Pei Ke | Xiaoyan Zhu | Minlie Huang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Training language models to learn from human instructions for zero-shot cross-task generalization has attracted much attention in NLP communities. Recently, instruction tuning (IT), which fine-tunes a pre-trained language model on a massive collection of tasks described via human-craft instructions, has been shown effective in instruction learning for unseen tasks. However, IT relies on a large amount of human-annotated samples, which restricts its generalization. Unlike labeled data, unlabeled data are often massive and cheap to obtain. In this work, we study how IT can be improved with unlabeled data. We first empirically explore the IT performance trends versus the number of labeled data, instructions, and training tasks. We find it critical to enlarge the number of training instructions, and the instructions can be underutilized due to the scarcity of labeled data. Then, we propose Unlabeled Data Augmented Instruction Tuning (UDIT) to take better advantage of the instructions during IT by constructing pseudo-labeled data from unlabeled plain texts. We conduct extensive experiments to show UDIT’s effectiveness in various scenarios of tasks and datasets. We also comprehensively analyze the key factors of UDIT to investigate how to better improve IT with unlabeled data. The code is publicly available at


pdf bib
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
Pei Ke | Haozhe Ji | Yu Ran | Xin Cui | Liwei Wang | Linfeng Song | Xiaoyan Zhu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021


pdf bib
Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph
Haozhe Ji | Pei Ke | Shaohan Huang | Furu Wei | Xiaoyan Zhu | Minlie Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate commonsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.

pdf bib
SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge
Pei Ke | Haozhe Ji | Siyang Liu | Xiaoyan Zhu | Minlie Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most of the existing pre-trained language representation models neglect to consider the linguistic knowledge of texts, which can promote language understanding in NLP tasks. To benefit the downstream tasks in sentiment analysis, we propose a novel language representation model called SentiLARE, which introduces word-level linguistic knowledge including part-of-speech tag and sentiment polarity (inferred from SentiWordNet) into pre-trained models. We first propose a context-aware sentiment attention mechanism to acquire the sentiment polarity of each word with its part-of-speech tag by querying SentiWordNet. Then, we devise a new pre-training task called label-aware masked language model to construct knowledge-aware language representation. Experiments show that SentiLARE obtains new state-of-the-art performance on a variety of sentiment analysis tasks.

pdf bib
Generating Commonsense Explanation by Extracting Bridge Concepts from Reasoning Paths
Haozhe Ji | Pei Ke | Shaohan Huang | Furu Wei | Minlie Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Commonsense explanation generation aims to empower the machine’s sense-making capability by generating plausible explanations to statements against commonsense. While this task is easy to human, the machine still struggles to generate reasonable and informative explanations. In this work, we propose a method that first extracts the underlying concepts which are served as bridges in the reasoning chain and then integrates these concepts to generate the final explanation. To facilitate the reasoning process, we utilize external commonsense knowledge to build the connection between a statement and the bridge concepts by extracting and pruning multi-hop paths to build a subgraph. We design a bridge concept extraction model that first scores the triples, routes the paths in the subgraph, and further selects bridge concepts with weak supervision at both the triple level and the concept level. We conduct experiments on the commonsense explanation generation task and our model outperforms the state-of-the-art baselines in both automatic and human evaluation.


pdf bib
ARAML: A Stable Adversarial Training Framework for Text Generation
Pei Ke | Fei Huang | Minlie Huang | Xiaoyan Zhu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Most of the existing generative adversarial networks (GAN) for text generation suffer from the instability of reinforcement learning training algorithms such as policy gradient, leading to unstable performance. To tackle this problem, we propose a novel framework called Adversarial Reward Augmented Maximum Likelihood (ARAML). During adversarial training, the discriminator assigns rewards to samples which are acquired from a stationary distribution near the data rather than the generator’s distribution. The generator is optimized with maximum likelihood estimation augmented by the discriminator’s rewards instead of policy gradient. Experiments show that our model can outperform state-of-the-art text GANs with a more stable training process.


pdf bib
Generating Informative Responses with Controlled Sentence Function
Pei Ke | Jian Guan | Minlie Huang | Xiaoyan Zhu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sentence function is a significant factor to achieve the purpose of the speaker, which, however, has not been touched in large-scale conversation generation so far. In this paper, we present a model to generate informative responses with controlled sentence function. Our model utilizes a continuous latent variable to capture various word patterns that realize the expected sentence function, and introduces a type controller to deal with the compatibility of controlling sentence function and generating informative content. Conditioned on the latent variable, the type controller determines the type (i.e., function-related, topic, and ordinary word) of a word to be generated at each decoding position. Experiments show that our model outperforms state-of-the-art baselines, and it has the ability to generate responses with both controlled sentence function and informative content.