Peifeng Li

Also published as: 培峰


2024

pdf bib
Improving Multi-party Dialogue Generation via Topic and Rhetorical Coherence
Yaxin Fan | Peifeng Li | Qiaoming Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Previous studies on multi-party dialogue generation predominantly concentrated on modeling the reply-to structure of dialogue histories, always overlooking the coherence between generated responses and target utterances. To address this issue, we propose a Reinforcement Learning approach emphasizing both Topic and Rhetorical Coherence (RL-TRC). In particular, the topic- and rhetorical-coherence tasks are designed to enhance the model’s perception of coherence with the target utterance. Subsequently, an agent is employed to learn a coherence policy, which guides the generation of responses that are topically and rhetorically aligned with the target utterance. Furthermore, three discourse-aware rewards are developed to assess the coherence between the generated response and the target utterance, with the objective of optimizing the policy. The experimental results and in-depth analyses on two popular datasets demonstrate that our RL-TRC significantly outperforms the state-of-the-art baselines, particularly in generating responses that are more coherent with the target utterances.

pdf bib
Incomplete Utterance Rewriting with Editing Operation Guidance and Utterance Augmentation
Zhiyu Cao | Peifeng Li | Yaxin Fan | Qiaoming Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Although existing fashionable generation methods on Incomplete Utterance Rewriting (IUR) can generate coherent utterances, they often result in the inclusion of irrelevant and redundant tokens in rewritten utterances due to their inability to focus on critical tokens in dialogue context. Furthermore, the limited size of the training datasets also contributes to the insufficient training of the IUR model. To address the first issue, we propose a multi-task learning framework EO-IUR (Editing Operation-guided Incomplete Utterance Rewriting) that introduces the editing operation labels generated by sequence labeling module to guide generation model to focus on critical tokens. Furthermore, we introduce a token-level heterogeneous graph to represent dialogues. To address the second issue, we propose a two-dimensional utterance augmentation strategy, namely editing operation-based incomplete utterance augmentation and LLM-based historical utterance augmentation. The experimental results on three datasets demonstrate that our EO-IUR outperforms previous state-of-the-art (SOTA) baselines in both open-domain and task-oriented dialogue.

pdf bib
Advancing Topic Segmentation and Outline Generation in Chinese Texts: The Paragraph-level Topic Representation, Corpus, and Benchmark
Feng Jiang | Weihao Liu | Xiaomin Chu | Peifeng Li | Qiaoming Zhu | Haizhou Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Topic segmentation and outline generation strive to divide a document into coherent topic sections and generate corresponding subheadings, unveiling the discourse topic structure of a document. Compared with sentence-level topic structure, the paragraph-level topic structure can quickly grasp and understand the overall context of the document from a higher level, benefitting many downstream tasks such as summarization, discourse parsing, and information retrieval. However, the lack of large-scale, high-quality Chinese paragraph-level topic structure corpora restrained relative research and applications. To fill this gap, we build the Chinese paragraph-level topic representation, corpus, and benchmark in this paper. Firstly, we propose a hierarchical paragraph-level topic structure representation with three layers to guide the corpus construction. Then, we employ a two-stage man-machine collaborative annotation method to construct the largest Chinese Paragraph-level Topic Structure corpus (CPTS), achieving high quality. We also build several strong baselines, including ChatGPT, to validate the computability of CPTS on two fundamental tasks (topic segmentation and outline generation) and preliminarily verified its usefulness for the downstream task (discourse parsing).

pdf bib
Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue: An Empirical Study
Yaxin Fan | Feng Jiang | Peifeng Li | Haizhou Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models, like ChatGPT, have shown remarkable capability in many downstream tasks, yet their ability to understand discourse structures of dialogues remains less explored, where it requires higher level capabilities of understanding and reasoning. In this paper, we aim to systematically inspect ChatGPT’s performance in two discourse analysis tasks: topic segmentation and discourse parsing, focusing on its deep semantic understanding of linear and hierarchical discourse structures underlying dialogue. To instruct ChatGPT to complete these tasks, we initially craft a prompt template consisting of the task description, output format, and structured input. Then, we conduct experiments on four popular topic segmentation datasets and two discourse parsing datasets. The experimental results showcase that ChatGPT demonstrates proficiency in identifying topic structures in general-domain conversations yet struggles considerably in specific-domain conversations. We also found that ChatGPT hardly understands rhetorical structures that are more complex than topic structures. Our deeper investigation indicates that ChatGPT can give more reasonable topic structures than human annotations but only linearly parses the hierarchical rhetorical structures. In addition, we delve into the impact of in-context learning (e.g., chain-of-thought) on ChatGPT and conduct the ablation study on various prompt components, which can provide a research foundation for future work. The code is available at https://github.com/yxfanSuda/GPTforDDA.

2023

pdf bib
Cross-Document Event Coreference Resolution on Discourse Structure
Xinyu Chen | Sheng Xu | Peifeng Li | Qiaoming Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Cross-document event coreference resolution (CD-ECR) is a task of clustering event mentions across multiple documents that refer to the same real-world events. Previous studies usually model the CD-ECR task as a pairwise similarity comparison problem by using different event mention features, and consider the highly similar event mention pairs in the same cluster as coreferent. In general, most of them only consider the local context of event mentions and ignore their implicit global information, thus failing to capture the interactions of long-distance event mentions. To address the above issue, we regard discourse structure as global information to further improve CD-ECR. First, we use a discourse rhetorical structure constructor to construct tree structures to represent documents. Then, we obtain shortest dependency paths from the tree structures to represent interactions between event mention pairs. Finally, we feed the above information to a multi-layer perceptron to capture the similarities of event mention pairs for resolving coreferent events. Experimental results on the ECB+ dataset show that our proposed model outperforms several baselines and achieves the competitive performance with the start-of-the-art baselines.

pdf bib
Improving Dialogue Discourse Parsing via Reply-to Structures of Addressee Recognition
Yaxin Fan | Feng Jiang | Peifeng Li | Fang Kong | Qiaoming Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Dialogue discourse parsing aims to reflect the relation-based structure of dialogue by establishing discourse links according to discourse relations. To alleviate data sparsity, previous studies have adopted multitasking approaches to jointly learn dialogue discourse parsing with related tasks (e.g., reading comprehension) that require additional human annotation, thus limiting their generality. In this paper, we propose a multitasking framework that integrates dialogue discourse parsing with its neighboring task addressee recognition. Addressee recognition reveals the reply-to structure that partially overlaps with the relation-based structure, which can be exploited to facilitate relation-based structure learning. To this end, we first proposed a reinforcement learning agent to identify training examples from addressee recognition that are most helpful for dialog discourse parsing. Then, a task-aware structure transformer is designed to capture the shared and private dialogue structure of different tasks, thereby further promoting dialogue discourse parsing. Experimental results on both the Molweni and STAC datasets show that our proposed method can outperform the SOTA baselines. The code will be available at https://github.com/yxfanSuda/RLTST.

pdf bib
CorefPrompt: Prompt-based Event Coreference Resolution by Measuring Event Type and Argument Compatibilities
Sheng Xu | Peifeng Li | Qiaoming Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Event coreference resolution (ECR) aims to group event mentions referring to the same real-world event into clusters. Most previous studies adopt the “encoding first, then scoring” framework, making the coreference judgment rely on event encoding. Furthermore, current methods struggle to leverage human-summarized ECR rules, e.g., coreferential events should have the same event type, to guide the model. To address these two issues, we propose a prompt-based approach, CorefPrompt, to transform ECR into a cloze-style MLM (masked language model) task. This allows for simultaneous event modeling and coreference discrimination within a single template, with a fully shared context. In addition, we introduce two auxiliary prompt tasks, event-type compatibility and argument compatibility, to explicitly demonstrate the reasoning process of ECR, which helps the model make final predictions. Experimental results show that our method CorefPrompt performs well in a state-of-the-art (SOTA) benchmark.

pdf bib
Incorporating Factuality Inference to Identify Document-level Event Factuality
Heng Zhang | Peifeng Li | Zhong Qian | Xiaoxu Zhu
Findings of the Association for Computational Linguistics: ACL 2023

Document-level Event Factuality Identification (DEFI) refers to identifying the degree of certainty that a specific event occurs in a document. Previous studies on DEFI failed to link the document-level event factuality with various sentence-level factuality values in the same document. In this paper, we innovatively propose an event factuality inference task to bridge the sentence-level and the document-level event factuality semantically. Specifically, we present a Sentence-to-Document Inference Network (SDIN) that contains a multi-layer interaction module and a gated aggregation module to integrate the above two tasks, and employ a multi-task learning framework to improve the performance of DEFI. The experimental results on the public English and Chinese DLEF datasets show that our model outperforms the SOTA baselines significantly.

pdf bib
Factual Relation Discrimination for Factuality-oriented Abstractive Summarization
Zhiguang Gao | Peifeng Li | Feng Jiang | Xiaomin Chu | Qiaoming Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Most neural abstractive summarization models are capable of producing high-quality summaries. However, they still frequently contain factual errors. Existing factuality-oriented abstractive summarization models only consider the integration of factual information and ignore the causes of factual errors. To address this issue, we propose a factuality-oriented abstractive summarization model DASum, which is based on a new task factual relation discrimination that is able to identify the causes of factual errors. First, we use data augmentation methods to construct counterfactual summaries (i. e., negative samples), and build a factual summarization dataset. Then, we propose the factual relation discrimination task, which determines the factuality of the dependency relations in summaries during summary generation and guides our DASum to generate factual relations, thereby improving the factuality of summaries. Experimental results on the CNN/DM and XSUM datasets show that our DASum outperforms several state-of-the-art benchmarks in terms of the factual metrics.

2022

pdf bib
基于新闻图式结构的篇章功能语用识别方法(Discourse Functional Pragmatics Recognition Based on News Schemata)
Mengqi Du (杜梦琦) | Feng Jiang (蒋峰) | Xiaomin Chu (褚晓敏) | Peifeng Li (李培峰)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“篇章分析是自然语言处理领域的研究热点和重点,篇章功能语用研究旨在分析篇章单元在篇章中的功能和作用,有助于深入理解篇章的主题和内容。目前篇章分析研究以形式语法为主,而篇章作为一个整体的语义单位,其功能和语义却没有引起足够重视。已有功能语用研究以面向事件抽取任务为主,并未进行通用领域的功能语用研究。鉴于功能语用研究的重要性和研究现状,本文提出了基于新闻图式结构的篇章功能语用识别方法来识别篇章功能语用。该方法在获取段落交互信息的同时又融入了篇章的新闻图式结构信息,并结合段落所在篇章中的位置信息,从而有效地提高了篇章功能语用的识别能力。在汉语宏观篇章树库的实验结果证明,本文提出的方法优于所有基准系统。”

pdf bib
A Distance-Aware Multi-Task Framework for Conversational Discourse Parsing
Yaxin Fan | Peifeng Li | Fang Kong | Qiaoming Zhu
Proceedings of the 29th International Conference on Computational Linguistics

Conversational discourse parsing aims to construct an implicit utterance dependency tree to reflect the turn-taking in a multi-party conversation. Existing works are generally divided into two lines: graph-based and transition-based paradigms, which perform well for short-distance and long-distance dependency links, respectively. However, there is no study to consider the advantages of both paradigms to facilitate conversational discourse parsing. As a result, we propose a distance-aware multi-task framework DAMT that incorporates the strengths of transition-based paradigm to facilitate the graph-based paradigm from the encoding and decoding process. To promote multi-task learning on two paradigms, we first introduce an Encoding Interactive Module (EIM) to enhance the flow of semantic information between both two paradigms during the encoding step. And then we apply a Distance-Aware Graph Convolutional Network (DAGCN) in the decoding process, which can incorporate the different-distance dependency links predicted by the transition-based paradigm to facilitate the decoding of the graph-based paradigm. The experimental results on the datasets STAC and Molweni show that our method can significantly improve the performance of the SOTA graph-based paradigm on long-distance dependency links.

pdf bib
A Hybrid Model of Classification and Generation for Spatial Relation Extraction
Feng Wang | Peifeng Li | Qiaoming Zhu
Proceedings of the 29th International Conference on Computational Linguistics

Extracting spatial relations from texts is a fundamental task for natural language understanding and previous studies only regard it as a classification task, ignoring those spatial relations with null roles due to their poor information. To address the above issue, we first view spatial relation extraction as a generation task and propose a novel hybrid model HMCGR for this task. HMCGR contains a generation and a classification model, while the former can generate those null-role relations and the latter can extract those non-null-role relations to complement each other. Moreover, a reflexivity evaluation mechanism is applied to further improve the accuracy based on the reflexivity principle of spatial relation. Experimental results on SpaceEval show that HMCGR outperforms the SOTA baselines significantly.

pdf bib
DCT-Centered Temporal Relation Extraction
Liang Wang | Peifeng Li | Sheng Xu
Proceedings of the 29th International Conference on Computational Linguistics

Most previous work on temporal relation extraction only focused on extracting the temporal relations among events or suffered from the issue of different expressions of events, timexes and Document Creation Time (DCT). Moreover, DCT can act as a hub to semantically connect the other events and timexes in a document. Unfortunately, previous work cannot benefit from such critical information. To address the above issues, we propose a unified DCT-centered Temporal Relation Extraction model DTRE to identify the relations among events, timexes and DCT. Specifically, sentence-style DCT representation is introduced to address the first issue and unify event expressions, timexes and DCT. Then, a DCT-aware graph is applied to obtain their contextual structural representations. Furthermore, a DCT-anchoring multi-task learning framework is proposed to jointly predict three types of temporal relations in a batch. Finally, we apply a DCT-guided global inference to further enhance the global consistency among different relations. Experimental results on three datasets show that our DTRE outperforms several SOTA baselines on E-E, E-T and E-D significantly.

pdf bib
Document-level Event Factuality Identification via Machine Reading Comprehension Frameworks with Transfer Learning
Zhong Qian | Heng Zhang | Peifeng Li | Qiaoming Zhu | Guodong Zhou
Proceedings of the 29th International Conference on Computational Linguistics

Document-level Event Factuality Identification (DEFI) predicts the factuality of a specific event based on a document from which the event can be derived, which is a fundamental and crucial task in Natural Language Processing (NLP). However, most previous studies only considered sentence-level task and did not adopt document-level knowledge. Moreover, they modelled DEFI as a typical text classification task depending on annotated information heavily, and limited to the task-specific corpus only, which resulted in data scarcity. To tackle these issues, we propose a new framework formulating DEFI as Machine Reading Comprehension (MRC) tasks considering both Span-Extraction (Ext) and Multiple-Choice (Mch). Our model does not employ any other explicit annotated information, and utilizes Transfer Learning (TL) to extract knowledge from universal large-scale MRC corpora for cross-domain data augmentation. The empirical results on DLEFM corpus demonstrate that the proposed model outperforms several state-of-the-arts.

pdf bib
Automated Chinese Essay Scoring from Multiple Traits
Yaqiong He | Feng Jiang | Xiaomin Chu | Peifeng Li
Proceedings of the 29th International Conference on Computational Linguistics

Automatic Essay Scoring (AES) is the task of using the computer to evaluate the quality of essays automatically. Current research on AES focuses on scoring the overall quality or single trait of prompt-specific essays. However, the users not only expect to obtain the overall score but also the instant feedback from different traits to help their writing in the real world. Therefore, we first annotate a mutli-trait dataset ACEA including 1220 argumentative essays from four traits, i.e., essay organization, topic, logic, and language. And then we design a hierarchical multi-task trait scorer HMTS to evaluate the quality of writing by modeling these four traits. Moreover, we propose an inter-sequence attention mechanism to enhance information interaction between different tasks and design the trait-specific features for various tasks in AES. The experimental results on ACEA show that our HMTS can effectively score essays from multiple traits, outperforming several strong models.

pdf bib
Improving Event Coreference Resolution Using Document-level and Topic-level Information
Sheng Xu | Peifeng Li | Qiaoming Zhu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Event coreference resolution (ECR) aims to cluster event mentions that refer to the same real-world events. Deep learning methods have achieved SOTA results on the ECR task. However, due to the encoding length limitation, previous methods either adopt classical pairwise models based on sentence-level context or split each document into multiple chunks and encode them separately. They failed to capture the interactions and contextual cues among those long-distance event mentions. Besides, high-level information, such as event topics, is rarely considered to enhance representation learning for ECR. To address the above two issues, we first apply a Longformer-based encoder to obtain the document-level embeddings and an encoder with a trigger-mask mechanism to learn sentence-level embeddings based on local context. In addition, we propose an event topic generator to infer the latent topic-level representations. Finally, using the above event embeddings, we employ a multiple tensor matching method to capture their interactions at the document, sentence, and topic levels. Experimental results on the KBP 2017 dataset show that our model outperforms the SOTA baselines.

2021

pdf bib
Not Just Classification: Recognizing Implicit Discourse Relation on Joint Modeling of Classification and Generation
Feng Jiang | Yaxin Fan | Xiaomin Chu | Peifeng Li | Qiaoming Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Implicit discourse relation recognition (IDRR) is a critical task in discourse analysis. Previous studies only regard it as a classification task and lack an in-depth understanding of the semantics of different relations. Therefore, we first view IDRR as a generation task and further propose a method joint modeling of the classification and generation. Specifically, we propose a joint model, CG-T5, to recognize the relation label and generate the target sentence containing the meaning of relations simultaneously. Furthermore, we design three target sentence forms, including the question form, for the generation model to incorporate prior knowledge. To address the issue that large discourse units are hardly embedded into the target sentence, we also propose a target sentence construction mechanism that automatically extracts core sentences from those large discourse units. Experimental results both on Chinese MCDTB and English PDTB datasets show that our model CG-T5 achieves the best performance against several state-of-the-art systems.

2020

pdf bib
A Top-down Neural Architecture towards Text-level Parsing of Discourse Rhetorical Structure
Longyin Zhang | Yuqing Xing | Fang Kong | Peifeng Li | Guodong Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Due to its great importance in deep natural language understanding and various down-stream applications, text-level parsing of discourse rhetorical structure (DRS) has been drawing more and more attention in recent years. However, all the previous studies on text-level discourse parsing adopt bottom-up approaches, which much limit the DRS determination on local information and fail to well benefit from global information of the overall discourse. In this paper, we justify from both computational and perceptive points-of-view that the top-down architecture is more suitable for text-level DRS parsing. On the basis, we propose a top-down neural architecture toward text-level DRS parsing. In particular, we cast discourse parsing as a recursive split point ranking task, where a split point is classified to different levels according to its rank and the elementary discourse units (EDUs) associated with it are arranged accordingly. In this way, we can determine the complete DRS as a hierarchical tree structure via an encoder-decoder with an internal stack. Experimentation on both the English RST-DT corpus and the Chinese CDTB corpus shows the great effectiveness of our proposed top-down approach towards text-level DRS parsing.

pdf bib
融合全局和局部信息的汉语宏观篇章结构识别(Combining Global and Local Information to Recognize Chinese Macro Discourse Structure)
Yaxin Fan (范亚鑫) | Feng Jiang (蒋峰) | Xiaomin Chu (褚晓敏) | Peifeng Li (李培峰) | Qiaoming Zhu (朱巧明)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

作为宏观篇章分析中的基础任务,篇章结构识别任务的目的是识别相邻篇章单元之间的结构,并层次化构建篇章结构树。已有的工作只考虑局部的结构和语义信息或只考虑全局信息。因此,本文提出了一种融合全局和局部信息的指针网络模型,该模型在考虑全局的语义信息同时,又考虑局部段落间的语义关系密切程度,从而有效地提高宏观篇章结构识别的能力。在汉语宏观篇章树库(MCDTB)的实验结果表明,本文所提出的模型性能优于目前性能最好的模型。

pdf bib
基于阅读理解框架的中文事件论元抽取(Chinese Event Argument Extraction using Reading Comprehension Framework)
Min Chen (陈敏) | Fan Wu (吴凡) | Zhongqing Wang (王中卿) | Peifeng Li (李培峰) | Qiaoming Zhu (朱巧明)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

传统的事件论元抽取方法把该任务当作句子中实体提及的多分类或序列标注任务,论元角色的类别在这些方法中只能作为向量表示,而忽略了论元角色的先验信息。实际上,论元角色的语义和论元本身有很大关系。对此,本文提议将其当作机器阅读理解任务,把论元角色表述为自然语言描述的问题,通过在上下文中回答这些问题来抽取论元。该方法更好地利用了论元角色类别的先验信息,在ACE2005中文语料上的实验证明了该方法的有效性。

pdf bib
基于半监督学习的中文社交文本事件聚类方法(Semi-supervised Method to Cluster Chinese Events on Social Streams)
Hengrui Guo (郭恒睿) | Zhongqing Wang (王中卿) | Peifeng Li (李培峰) | Qiaoming Zhu (朱巧明)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

面向社交媒体的事件聚类旨在根据事件特征对短文本聚类。目前,事件聚类模型主要分为无监督模型和有监督模型。无监督模型聚类效果较差,有监督模型依赖大量标注数据。基于此,本文提出了一种半监督事件聚类模型(SemiEC),该模型在小规模标注数据的基础上,利用LSTM表征事件,利用线性模型计算文本相似度,进行增量聚类,利用增量聚类产生的标注数据对模型再训练,结束后对不确定样本再聚类。实验表明,SemiEC的性能相比其他模型均有所提高。

pdf bib
Chinese Paragraph-level Discourse Parsing with Global Backward and Local Reverse Reading
Feng Jiang | Xiaomin Chu | Peifeng Li | Fang Kong | Qiaoming Zhu
Proceedings of the 28th International Conference on Computational Linguistics

Discourse structure tree construction is the fundamental task of discourse parsing and most previous work focused on English. Due to the cultural and linguistic differences, existing successful methods on English discourse parsing cannot be transformed into Chinese directly, especially in paragraph level suffering from longer discourse units and fewer explicit connectives. To alleviate the above issues, we propose two reading modes, i.e., the global backward reading and the local reverse reading, to construct Chinese paragraph level discourse trees. The former processes discourse units from the end to the beginning in a document to utilize the left-branching bias of discourse structure in Chinese, while the latter reverses the position of paragraphs in a discourse unit to enhance the differentiation of coherence between adjacent discourse units. The experimental results on Chinese MCDTB demonstrate that our model outperforms all strong baselines.

2019

pdf bib
Document-Level Event Factuality Identification via Adversarial Neural Network
Zhong Qian | Peifeng Li | Qiaoming Zhu | Guodong Zhou
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Document-level event factuality identification is an important subtask in event factuality and is crucial for discourse understanding in Natural Language Processing (NLP). Previous studies mainly suffer from the scarcity of suitable corpus and effective methods. To solve these two issues, we first construct a corpus annotated with both document- and sentence-level event factuality information on both English and Chinese texts. Then we present an LSTM neural network based on adversarial training with both intra- and inter-sequence attentions to identify document-level event factuality. Experimental results show that our neural network model can outperform various baselines on the constructed corpus.

pdf bib
Topic Tensor Network for Implicit Discourse Relation Recognition in Chinese
Sheng Xu | Peifeng Li | Fang Kong | Qiaoming Zhu | Guodong Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In the literature, most of the previous studies on English implicit discourse relation recognition only use sentence-level representations, which cannot provide enough semantic information in Chinese due to its unique paratactic characteristics. In this paper, we propose a topic tensor network to recognize Chinese implicit discourse relations with both sentence-level and topic-level representations. In particular, besides encoding arguments (discourse units) using a gated convolutional network to obtain sentence-level representations, we train a simplified topic model to infer the latent topic-level representations. Moreover, we feed the two pairs of representations to two factored tensor networks, respectively, to capture both the sentence-level interactions and topic-level relevance using multi-slice tensors. Experimentation on CDTB, a Chinese discourse corpus, shows that our proposed model significantly outperforms several state-of-the-art baselines in both micro and macro F1-scores.

2018

pdf bib
Employing Text Matching Network to Recognise Nuclearity in Chinese Discourse
Sheng Xu | Peifeng Li | Guodong Zhou | Qiaoming Zhu
Proceedings of the 27th International Conference on Computational Linguistics

The task of nuclearity recognition in Chinese discourse remains challenging due to the demand for more deep semantic information. In this paper, we propose a novel text matching network (TMN) that encodes the discourse units and the paragraphs by combining Bi-LSTM and CNN to capture both global dependency information and local n-gram information. Moreover, it introduces three components of text matching, the Cosine, Bilinear and Single Layer Network, to incorporate various similarities and interactions among the discourse units. Experimental results on the Chinese Discourse TreeBank show that our proposed TMN model significantly outperforms various strong baselines in both micro-F1 and macro-F1.

pdf bib
MCDTB: A Macro-level Chinese Discourse TreeBank
Feng Jiang | Sheng Xu | Xiaomin Chu | Peifeng Li | Qiaoming Zhu | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

In view of the differences between the annotations of micro and macro discourse rela-tionships, this paper describes the relevant experiments on the construction of the Macro Chinese Discourse Treebank (MCDTB), a higher-level Chinese discourse corpus. Fol-lowing RST (Rhetorical Structure Theory), we annotate the macro discourse information, including discourse structure, nuclearity and relationship, and the additional discourse information, including topic sentences, lead and abstract, to make the macro discourse annotation more objective and accurate. Finally, we annotated 720 articles with a Kappa value greater than 0.6. Preliminary experiments on this corpus verify the computability of MCDTB.

2016

pdf bib
Global Inference to Chinese Temporal Relation Extraction
Peifeng Li | Qiaoming Zhu | Guodong Zhou | Hongling Wang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Previous studies on temporal relation extraction focus on mining sentence-level information or enforcing coherence on different temporal relation types among various event mentions in the same sentence or neighboring sentences, largely ignoring those discourse-level temporal relations in nonadjacent sentences. In this paper, we propose a discourse-level global inference model to mine those temporal relations between event mentions in document-level, especially in nonadjacent sentences. Moreover, we provide various kinds of discourse-level constraints, which derived from event semantics, to further improve our global inference model. Evaluation on a Chinese corpus justifies the effectiveness of our discourse-level global inference model over two strong baselines.

pdf bib
Speculation and Negation Scope Detection via Convolutional Neural Networks
Zhong Qian | Peifeng Li | Qiaoming Zhu | Guodong Zhou | Zhunchen Luo | Wei Luo
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Employing Event Inference to Improve Semi-Supervised Chinese Event Extraction
Peifeng Li | Qiaoming Zhu | Guodong Zhou
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf bib
Argument Inference from Relevant Event Mentions in Chinese Argument Extraction
Peifeng Li | Qiaoming Zhu | Guodong Zhou
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Joint Modeling of News Reader’s and Comment Writer’s Emotions
Huanhuan Liu | Shoushan Li | Guodong Zhou | Chu-Ren Huang | Peifeng Li
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf bib
Employing Morphological Structures and Sememes for Chinese Event Extraction
Peifeng Li | Guodong Zhou
Proceedings of COLING 2012

pdf bib
Joint Modeling of Trigger Identification and Event Type Determination in Chinese Event Extraction
Peifeng Li | Qiaoming Zhu | Hongjun Diao | Guodong Zhou
Proceedings of COLING 2012

pdf bib
Employing Compositional Semantics and Discourse Consistency in Chinese Event Extraction
Peifeng Li | Guodong Zhou | Qiaoming Zhu | Libin Hou
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2011

pdf bib
Using Context Inference to Improve Sentence Ordering for Multi-document Summarization
Peifeng Li | Guangxi Deng | Qiaoming Zhu
Proceedings of 5th International Joint Conference on Natural Language Processing