Peiling Lu


2023

pdf bib
MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models
Dingyao Yu | Kaitao Song | Peiling Lu | Tianyu He | Xu Tan | Wei Ye | Shikun Zhang | Jiang Bian
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

AI-empowered music processing is a diverse feld that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classifcation). For developers and amateurs, it is very diffcult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience. The code is available on GitHub along with a brief instructional video.

2022

pdf bib
TeleMelody: Lyric-to-Melody Generation with a Template-Based Two-Stage Method
Zeqian Ju | Peiling Lu | Xu Tan | Rui Wang | Chen Zhang | Songruoyao Wu | Kejun Zhang | Xiang-Yang Li | Tao Qin | Tie-Yan Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Lyric-to-melody generation is an important task in automatic songwriting. Previous lyric-to-melody generation systems usually adopt end-to-end models that directly generate melodies from lyrics, which suffer from several issues: 1) lack of paired lyric-melody training data; 2) lack of control on generated melodies. In this paper, we develop TeleMelody, a two-stage lyric-to-melody generation system with music template (e.g., tonality, chord progression, rhythm pattern, and cadence) to bridge the gap between lyrics and melodies (i.e., the system consists of a lyric-to-template module and a template-to-melody module). TeleMelody has two advantages. First, it is data efficient. The template-to-melody module is trained in a self-supervised way (i.e., the source template is extracted from the target melody) that does not need any lyric-melody paired data. The lyric-to-template module is made up of some rules and a lyric-to-rhythm model, which is trained with paired lyric-rhythm data that is easier to obtain than paired lyric-melody data. Second, it is controllable. The design of the template ensures that the generated melodies can be controlled by adjusting the musical elements in the template. Both subjective and objective experimental evaluations demonstrate that TeleMelody generates melodies with higher quality, better controllability, and less requirement on paired lyric-melody data than previous generation systems.