Peixin Huang


2022

pdf bib
Extract-Select: A Span Selection Framework for Nested Named Entity Recognition with Generative Adversarial Training
Peixin Huang | Xiang Zhao | Minghao Hu | Yang Fang | Xinyi Li | Weidong Xiao
Findings of the Association for Computational Linguistics: ACL 2022

Nested named entity recognition (NER) is a task in which named entities may overlap with each other. Span-based approaches regard nested NER as a two-stage span enumeration and classification task, thus having the innate ability to handle this task. However, they face the problems of error propagation, ignorance of span boundary, difficulty in long entity recognition and requirement on large-scale annotated data. In this paper, we propose Extract-Select, a span selection framework for nested NER, to tackle these problems. Firstly, we introduce a span selection framework in which nested entities with different input categories would be separately extracted by the extractor, thus naturally avoiding error propagation in two-stage span-based approaches. In the inference phase, the trained extractor selects final results specific to the given entity category. Secondly, we propose a hybrid selection strategy in the extractor, which not only makes full use of span boundary but also improves the ability of long entity recognition. Thirdly, we design a discriminator to evaluate the extraction result, and train both extractor and discriminator with generative adversarial training (GAT). The use of GAT greatly alleviates the stress on the dataset size. Experimental results on four benchmark datasets demonstrate that Extract-Select outperforms competitive nested NER models, obtaining state-of-the-art results. The proposed model also performs well when less labeled data are given, proving the effectiveness of GAT.

2020

pdf bib
Joint Event Extraction with Hierarchical Policy Network
Peixin Huang | Xiang Zhao | Ryuichi Takanobu | Zhen Tan | Weidong Xiao
Proceedings of the 28th International Conference on Computational Linguistics

Most existing work on event extraction (EE) either follows a pipelined manner or uses a joint structure but is pipelined in essence. As a result, these efforts fail to utilize information interactions among event triggers, event arguments, and argument roles, which causes information redundancy. In view of this, we propose to exploit the role information of the arguments in an event and devise a Hierarchical Policy Network (HPNet) to perform joint EE. The whole EE process is fulfilled through a two-level hierarchical structure consisting of two policy networks for event detection and argument detection. The deep information interactions among the subtasks are realized, and it is more natural to deal with multiple events issue. Extensive experiments on ACE2005 and TAC2015 demonstrate the superiority of HPNet, leading to state-of-the-art performance and is more powerful for sentences with multiple events.