Peiyi Wang


2023

pdf bib
Rationale-Enhanced Language Models are Better Continual Relation Learners
Weimin Xiong | Yifan Song | Peiyi Wang | Sujian Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Continual relation extraction (CRE) aims to solve the problem of catastrophic forgetting when learning a sequence of newly emerging relations. Recent CRE studies have found that catastrophic forgetting arises from the model’s lack of robustness against future analogous relations. To address the issue, we introduce rationale, i.e., the explanations of relation classification results generated by Large Language Models (LLM), into CRE task. Specifically, we design the multi-task rationale tuning strategy to help the model learn current relations robustly. We also conduct contrastive rationale replay to further distinguish analogous relations. Experimental results on two standard benchmarks demonstrate that our method outperforms the state-of-the-art CRE models.

pdf bib
CCL23-Eval任务4总结报告:第三届中文空间语义理解评测(Overview of CCL23-Eval Task 4:The 3rd Chinese Spatial Cognition Evaluation)
Liming Xiao (肖力铭) | Weidong Zhan (詹卫东) | Zhifang Sui (穗志方) | Yuhang Qin (秦宇航) | Chunhui Sun (孙春晖) | Dan Xing (邢丹) | Nan Li (李楠) | Fangwei Zhu (祝方韦) | Peiyi Wang (王培懿)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“第三届中文空间语义理解评测任务(SpaCE2023)旨在测试机器的空间语义理解能力,包括三个子任务:(1)空间信息异常识别任务;(2)空间语义角色标注任务;(3)空间场景异同判断任务。本届评测在SpaCE2022的基础上,优化了子任务一和子任务二的任务设计,并提出了子任务三这一全新的评测任务。最终有1支队伍提交参赛结果,并且在子任务一上的成绩超过了基线模型。本文还报告了大语言模型ChatGPT在SpaCE2023三个子任务上的表现,结合问题提出指令设计可改进的方向。”

pdf bib
Enhancing Continual Relation Extraction via Classifier Decomposition
Heming Xia | Peiyi Wang | Tianyu Liu | Binghuai Lin | Yunbo Cao | Zhifang Sui
Findings of the Association for Computational Linguistics: ACL 2023

Continual relation extraction (CRE) models aim at handling emerging new relations while avoiding catastrophically forgetting old ones in the streaming data. Though improvements have been shown by previous CRE studies, most of them only adopt a vanilla strategy when models first learn representations of new relations. In this work, we point out that there exist two typical biases after training of this vanilla strategy: classifier bias and representation bias, which causes the previous knowledge that the model learned to be shaded. To alleviate those biases, we propose a simple yet effective classifier decomposition framework that splits the last FFN layer into separated previous and current classifiers, so as to maintain previous knowledge and encourage the model to learn more robust representations at this training stage. Experimental results on two standard benchmarks show that our proposed framework consistently outperforms the state-of-the-art CRE models, which indicates that the importance of the first training stage to CRE models may be underestimated. Our code will be released upon acceptance.

pdf bib
Guiding AMR Parsing with Reverse Graph Linearization
Bofei Gao | Liang Chen | Peiyi Wang | Zhifang Sui | Baobao Chang
Findings of the Association for Computational Linguistics: EMNLP 2023

Abstract Meaning Representation (AMR) parsing aims to extract an abstract semantic graph from a given sentence. The sequence-to-sequence approaches, which linearize the semantic graph into a sequence of nodes and edges and generate the linearized graph directly, have achieved good performance. However, we observed that these approaches suffer from structure loss accumulation during the decoding process, leading to a much lower F1-score for nodes and edges decoded later compared to those decoded earlier. To address this issue, we propose a novel Reverse Graph Linearization (RGL) enhanced framework. RGL defines both default and reverse linearization orders of an AMR graph, where most structures at the back part of the default order appear at the front part of the reversed order and vice versa. RGL incorporates the reversed linearization to the original AMR parser through a two-pass self-distillation mechanism, which guides the model when generating the default linearizations. Our analysis shows that our proposed method significantly mitigates the problem of structure loss accumulation, outperforming the previously best AMR parsing model by 0.8 and 0.5 Smatch scores on the AMR 2.0 and AMR 3.0 dataset, respectively. The code are available at https://github.com/pkunlp-icler/AMR_reverse_graph_linearization.

pdf bib
Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation
Heming Xia | Tao Ge | Peiyi Wang | Si-Qing Chen | Furu Wei | Zhifang Sui
Findings of the Association for Computational Linguistics: EMNLP 2023

We propose Speculative Decoding (SpecDec), for the first time ever, to formally study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding. Speculative Decoding has two innovations: Spec-Drafter – an independent model specially optimized for efficient and accurate drafting – and Spec-Verification – a reliable method for verifying the drafted tokens efficiently in the decoding paradigm. Experimental results on various seq2seq tasks including machine translation and abstractive summarization show our approach can achieve around 5x speedup for the popular Transformer architectures with comparable generation quality to beam search decoding, refreshing the impression that the draft-then-verify paradigm introduces only 1.4x~2x speedup. In addition to the remarkable speedup, we also demonstrate 3 additional advantages of SpecDec, revealing its practical value for accelerating generative models in real-world applications. Our models and codes are available at https://github.com/hemingkx/SpecDec.

pdf bib
Not All Demonstration Examples are Equally Beneficial: Reweighting Demonstration Examples for In-Context Learning
Zhe Yang | Damai Dai | Peiyi Wang | Zhifang Sui
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have recently gained the In-Context Learning (ICL) ability with the models scaling up, allowing them to quickly adapt to downstream tasks with only a few demonstration examples prepended in the input sequence. Nonetheless, the current practice of ICL treats all demonstration examples equally, which still warrants improvement, as the quality of examples is usually uneven. In this paper, we investigate how to determine approximately optimal weights for demonstration examples and how to apply them during ICL. To assess the quality of weights in the absence of additional validation data, we design a masked self-prediction (MSP) score that exhibits a strong correlation with the final ICL performance. To expedite the weight-searching process, we discretize the continuous weight space and adopt beam search. With approximately optimal weights obtained, we further propose two strategies to apply them to demonstrations at different model positions. Experimental results on 8 text classification tasks show that our approach outperforms conventional ICL by a large margin. Our code are publicly available at https:github.com/Zhe-Young/WICL.

pdf bib
InfoCL: Alleviating Catastrophic Forgetting in Continual Text Classification from An Information Theoretic Perspective
Yifan Song | Peiyi Wang | Weimin Xiong | Dawei Zhu | Tianyu Liu | Zhifang Sui | Sujian Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Continual learning (CL) aims to constantly learn new knowledge over time while avoiding catastrophic forgetting on old tasks. We focus on continual text classification under the class-incremental setting. Recent CL studies have identified the severe performance decrease on analogous classes as a key factor for catastrophic forgetting. In this paper, through an in-depth exploration of the representation learning process in CL, we discover that the compression effect of the information bottleneck leads to confusion on analogous classes. To enable the model learn more sufficient representations, we propose a novel replay-based continual text classification method, InfoCL. Our approach utilizes fast-slow and current-past contrastive learning to perform mutual information maximization and better recover the previously learned representations. In addition, InfoCL incorporates an adversarial memory augmentation strategy to alleviate the overfitting problem of replay. Experimental results demonstrate that InfoCL effectively mitigates forgetting and achieves state-of-the-art performance on three text classification tasks.

2022

pdf bib
HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification
Zihan Wang | Peiyi Wang | Tianyu Liu | Binghuai Lin | Yunbo Cao | Zhifang Sui | Houfeng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Hierarchical text classification (HTC) is a challenging subtask of multi-label classification due to its complex label hierarchy. Recently, the pretrained language models (PLM)have been widely adopted in HTC through a fine-tuning paradigm. However, in this paradigm, there exists a huge gap between the classification tasks with sophisticated label hierarchy and the masked language model (MLM) pretraining tasks of PLMs and thus the potential of PLMs cannot be fully tapped. To bridge the gap, in this paper, we propose HPT, a Hierarchy-aware Prompt Tuning method to handle HTC from a multi-label MLM perspective. Specifically, we construct a dynamic virtual template and label words that take the form of soft prompts to fuse the label hierarchy knowledge and introduce a zero-bounded multi-label cross-entropy loss to harmonize the objectives of HTC and MLM.Extensive experiments show HPT achieves state-of-the-art performances on 3 popular HTC datasets and is adept at handling the imbalance and low resource situations. Our code is available at https://github.com/wzh9969/HPT.

pdf bib
Learning Robust Representations for Continual Relation Extraction via Adversarial Class Augmentation
Peiyi Wang | Yifan Song | Tianyu Liu | Binghuai Lin | Yunbo Cao | Sujian Li | Zhifang Sui
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Continual relation extraction (CRE) aims to continually learn new relations from a class-incremental data stream. CRE model usually suffers from catastrophic forgetting problem, i.e., the performance of old relations seriously degrades when the model learns new relations. Most previous work attributes catastrophic forgetting to the corruption of the learned representations as new relations come, with an implicit assumption that the CRE models have adequately learned the old relations. In this paper, through empirical studies we argue that this assumption may not hold, and an important reason for catastrophic forgetting is that the learned representations do not have good robustness against the appearance of analogous relations in the subsequent learning process. To address this issue, we encourage the model to learn more precise and robust representations through a simple yet effective adversarial class augmentation mechanism (ACA), which is easy to implement and model-agnostic. Experimental results show that ACA can consistently improve the performance of state-of-the-art CRE models on two popular benchmarks.

pdf bib
Incorporating Hierarchy into Text Encoder: a Contrastive Learning Approach for Hierarchical Text Classification
Zihan Wang | Peiyi Wang | Lianzhe Huang | Xin Sun | Houfeng Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Hierarchical text classification is a challenging subtask of multi-label classification due to its complex label hierarchy. Existing methods encode text and label hierarchy separately and mix their representations for classification, where the hierarchy remains unchanged for all input text. Instead of modeling them separately, in this work, we propose Hierarchy-guided Contrastive Learning (HGCLR) to directly embed the hierarchy into a text encoder. During training, HGCLR constructs positive samples for input text under the guidance of the label hierarchy. By pulling together the input text and its positive sample, the text encoder can learn to generate the hierarchy-aware text representation independently. Therefore, after training, the HGCLR enhanced text encoder can dispense with the redundant hierarchy. Extensive experiments on three benchmark datasets verify the effectiveness of HGCLR.

pdf bib
Hierarchical Curriculum Learning for AMR Parsing
Peiyi Wang | Liang Chen | Tianyu Liu | Damai Dai | Yunbo Cao | Baobao Chang | Zhifang Sui
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Abstract Meaning Representation (AMR) parsing aims to translate sentences to semantic representation with a hierarchical structure, and is recently empowered by pretrained sequence-to-sequence models. However, there exists a gap between their flat training objective (i.e., equally treats all output tokens) and the hierarchical AMR structure, which limits the model generalization. To bridge this gap, we propose a Hierarchical Curriculum Learning (HCL) framework with Structure-level (SC) and Instance-level Curricula (IC). SC switches progressively from core to detail AMR semantic elements while IC transits from structure-simple to -complex AMR instances during training. Through these two warming-up processes, HCL reduces the difficulty of learning complex structures, thus the flat model can better adapt to the AMR hierarchy. Extensive experiments on AMR2.0, AMR3.0, structure-complex and out-of-distribution situations verify the effectiveness of HCL.

pdf bib
ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs
Liang Chen | Peiyi Wang | Runxin Xu | Tianyu Liu | Zhifang Sui | Baobao Chang
Findings of the Association for Computational Linguistics: NAACL 2022

As Abstract Meaning Representation (AMR) implicitly involves compound semantic annotations, we hypothesize auxiliary tasks which are semantically or formally related can better enhance AMR parsing. We find that 1) Semantic role labeling (SRL) and dependency parsing (DP), would bring more performance gain than other tasks e.g. MT and summarization in the text-to-AMR transition even with much less data. 2) To make a better fit for AMR, data from auxiliary tasks should be properly “AMRized” to PseudoAMR before training. Knowledge from shallow level parsing tasks can be better transferred to AMR Parsing with structure transform. 3) Intermediate-task learning is a better paradigm to introduce auxiliary tasks to AMR parsing, compared to multitask learning. From an empirical perspective, we propose a principled method to involve auxiliary tasks to boost AMR parsing. Extensive experiments show that our method achieves new state-of-the-art performance on different benchmarks especially in topology-related scores. Code and models are released at https://github.com/PKUnlp-icler/ATP.

pdf bib
An Enhanced Span-based Decomposition Method for Few-Shot Sequence Labeling
Peiyi Wang | Runxin Xu | Tianyu Liu | Qingyu Zhou | Yunbo Cao | Baobao Chang | Zhifang Sui
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Few-Shot Sequence Labeling (FSSL) is a canonical paradigm for the tagging models, e.g., named entity recognition and slot filling, to generalize on an emerging, resource-scarce domain. Recently, the metric-based meta-learning framework has been recognized as a promising approach for FSSL. However, most prior works assign a label to each token based on the token-level similarities, which ignores the integrality of named entities or slots. To this end, in this paper, we propose ESD, an Enhanced Span-based Decomposition method for FSSL. ESD formulates FSSL as a span-level matching problem between test query and supporting instances. Specifically, ESD decomposes the span matching problem into a series of span-level procedures, mainly including enhanced span representation, class prototype aggregation and span conflicts resolution. Extensive experiments show that ESD achieves the new state-of-the-art results on two popular FSSL benchmarks, FewNERD and SNIPS, and is proven to be more robust in the noisy and nested tagging scenarios.

pdf bib
A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction
Runxin Xu | Peiyi Wang | Tianyu Liu | Shuang Zeng | Baobao Chang | Zhifang Sui
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Most previous studies aim at extracting events from a single sentence, while document-level event extraction still remains under-explored. In this paper, we focus on extracting event arguments from an entire document, which mainly faces two critical problems: a) the long-distance dependency between trigger and arguments over sentences; b) the distracting context towards an event in the document. To address these issues, we propose a Two-Stream Abstract meaning Representation enhanced extraction model (TSAR). TSAR encodes the document from different perspectives by a two-stream encoding module, to utilize local and global information and lower the impact of distracting context. Besides, TSAR introduces an AMR-guided interaction module to capture both intra-sentential and inter-sentential features, based on the locally and globally constructed AMR semantic graphs. An auxiliary boundary loss is introduced to enhance the boundary information for text spans explicitly. Extensive experiments illustrate that TSAR outperforms previous state-of-the-art by a large margin, with 2.54 F1 and 5.13 F1 performance gain on the public RAMS and WikiEvents datasets respectively, showing the superiority in the cross-sentence arguments extraction. We release our code in https://github.com/PKUnlp-icler/TSAR.