Peng Li


2021

pdf bib
Context Tracking Network: Graph-based Context Modeling for Implicit Discourse Relation Recognition
Yingxue Zhang | Fandong Meng | Peng Li | Ping Jian | Jie Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each local sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.

pdf bib
ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning
Yujia Qin | Yankai Lin | Ryuichi Takanobu | Zhiyuan Liu | Peng Li | Heng Ji | Minlie Huang | Maosong Sun | Jie Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained Language Models (PLMs) have shown superior performance on various downstream Natural Language Processing (NLP) tasks. However, conventional pre-training objectives do not explicitly model relational facts in text, which are crucial for textual understanding. To address this issue, we propose a novel contrastive learning framework ERICA to obtain a deep understanding of the entities and their relations in text. Specifically, we define two novel pre-training tasks to better understand entities and relations: (1) the entity discrimination task to distinguish which tail entity can be inferred by the given head entity and relation; (2) the relation discrimination task to distinguish whether two relations are close or not semantically, which involves complex relational reasoning. Experimental results demonstrate that ERICA can improve typical PLMs (BERT and RoBERTa) on several language understanding tasks, including relation extraction, entity typing and question answering, especially under low-resource settings.

pdf bib
Rethinking Stealthiness of Backdoor Attack against NLP Models
Wenkai Yang | Yankai Lin | Peng Li | Jie Zhou | Xu Sun
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent researches have shown that large natural language processing (NLP) models are vulnerable to a kind of security threat called the Backdoor Attack. Backdoor attacked models can achieve good performance on clean test sets but perform badly on those input sentences injected with designed trigger words. In this work, we point out a potential problem of current backdoor attacking research: its evaluation ignores the stealthiness of backdoor attacks, and most of existing backdoor attacking methods are not stealthy either to system deployers or to system users. To address this issue, we first propose two additional stealthiness-based metrics to make the backdoor attacking evaluation more credible. We further propose a novel word-based backdoor attacking method based on negative data augmentation and modifying word embeddings, making an important step towards achieving stealthy backdoor attacking. Experiments on sentiment analysis and toxic detection tasks show that our method is much stealthier while maintaining pretty good attacking performance. Our code is available at https://github.com/lancopku/SOS.

pdf bib
CLEVE: Contrastive Pre-training for Event Extraction
Ziqi Wang | Xiaozhi Wang | Xu Han | Yankai Lin | Lei Hou | Zhiyuan Liu | Peng Li | Juanzi Li | Jie Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event extraction (EE) has considerably benefited from pre-trained language models (PLMs) by fine-tuning. However, existing pre-training methods have not involved modeling event characteristics, resulting in the developed EE models cannot take full advantage of large-scale unsupervised data. To this end, we propose CLEVE, a contrastive pre-training framework for EE to better learn event knowledge from large unsupervised data and their semantic structures (e.g. AMR) obtained with automatic parsers. CLEVE contains a text encoder to learn event semantics and a graph encoder to learn event structures respectively. Specifically, the text encoder learns event semantic representations by self-supervised contrastive learning to represent the words of the same events closer than those unrelated words; the graph encoder learns event structure representations by graph contrastive pre-training on parsed event-related semantic structures. The two complementary representations then work together to improve both the conventional supervised EE and the unsupervised “liberal” EE, which requires jointly extracting events and discovering event schemata without any annotated data. Experiments on ACE 2005 and MAVEN datasets show that CLEVE achieves significant improvements, especially in the challenging unsupervised setting. The source code and pre-trained checkpoints can be obtained from https://github.com/THU-KEG/CLEVE.

pdf bib
GoG: Relation-aware Graph-over-Graph Network for Visual Dialog
Feilong Chen | Xiuyi Chen | Fandong Meng | Peng Li | Jie Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Multimodal Incremental Transformer with Visual Grounding for Visual Dialogue Generation
Feilong Chen | Fandong Meng | Xiuyi Chen | Peng Li | Jie Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Unsupervised Knowledge Selection for Dialogue Generation
Xiuyi Chen | Feilong Chen | Fandong Meng | Peng Li | Jie Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Manual Evaluation Matters: Reviewing Test Protocols of Distantly Supervised Relation Extraction
Tianyu Gao | Xu Han | Yuzhuo Bai | Keyue Qiu | Zhiyu Xie | Yankai Lin | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Learning to Recover from Multi-Modality Errors for Non-Autoregressive Neural Machine Translation
Qiu Ran | Yankai Lin | Peng Li | Jie Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Non-autoregressive neural machine translation (NAT) predicts the entire target sequence simultaneously and significantly accelerates inference process. However, NAT discards the dependency information in a sentence, and thus inevitably suffers from the multi-modality problem: the target tokens may be provided by different possible translations, often causing token repetitions or missing. To alleviate this problem, we propose a novel semi-autoregressive model RecoverSAT in this work, which generates a translation as a sequence of segments. The segments are generated simultaneously while each segment is predicted token-by-token. By dynamically determining segment length and deleting repetitive segments, RecoverSAT is capable of recovering from repetitive and missing token errors. Experimental results on three widely-used benchmark datasets show that our proposed model achieves more than 4 times speedup while maintaining comparable performance compared with the corresponding autoregressive model.

pdf bib
Continual Relation Learning via Episodic Memory Activation and Reconsolidation
Xu Han | Yi Dai | Tianyu Gao | Yankai Lin | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Continual relation learning aims to continually train a model on new data to learn incessantly emerging novel relations while avoiding catastrophically forgetting old relations. Some pioneering work has proved that storing a handful of historical relation examples in episodic memory and replaying them in subsequent training is an effective solution for such a challenging problem. However, these memory-based methods usually suffer from overfitting the few memorized examples of old relations, which may gradually cause inevitable confusion among existing relations. Inspired by the mechanism in human long-term memory formation, we introduce episodic memory activation and reconsolidation (EMAR) to continual relation learning. Every time neural models are activated to learn both new and memorized data, EMAR utilizes relation prototypes for memory reconsolidation exercise to keep a stable understanding of old relations. The experimental results show that EMAR could get rid of catastrophically forgetting old relations and outperform the state-of-the-art continual learning models.

pdf bib
WeChat Neural Machine Translation Systems for WMT20
Fandong Meng | Jianhao Yan | Yijin Liu | Yuan Gao | Xianfeng Zeng | Qinsong Zeng | Peng Li | Ming Chen | Jie Zhou | Sifan Liu | Hao Zhou
Proceedings of the Fifth Conference on Machine Translation

We participate in the WMT 2020 shared newstranslation task on Chinese→English. Our system is based on the Transformer (Vaswaniet al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese→English system achieves 36.9 case-sensitive BLEU score, which is thehighest among all submissions.

pdf bib
MAVEN: A Massive General Domain Event Detection Dataset
Xiaozhi Wang | Ziqi Wang | Xu Han | Wangyi Jiang | Rong Han | Zhiyuan Liu | Juanzi Li | Peng Li | Yankai Lin | Jie Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Event detection (ED), which means identifying event trigger words and classifying event types, is the first and most fundamental step for extracting event knowledge from plain text. Most existing datasets exhibit the following issues that limit further development of ED: (1) Data scarcity. Existing small-scale datasets are not sufficient for training and stably benchmarking increasingly sophisticated modern neural methods. (2) Low coverage. Limited event types of existing datasets cannot well cover general-domain events, which restricts the applications of ED models. To alleviate these problems, we present a MAssive eVENt detection dataset (MAVEN), which contains 4,480 Wikipedia documents, 118,732 event mention instances, and 168 event types. MAVEN alleviates the data scarcity problem and covers much more general event types. We reproduce the recent state-of-the-art ED models and conduct a thorough evaluation on MAVEN. The experimental results show that existing ED methods cannot achieve promising results on MAVEN as on the small datasets, which suggests that ED in the real world remains a challenging task and requires further research efforts. We also discuss further directions for general domain ED with empirical analyses. The source code and dataset can be obtained from https://github.com/THU-KEG/MAVEN-dataset.

pdf bib
Disentangle-based Continual Graph Representation Learning
Xiaoyu Kou | Yankai Lin | Shaobo Liu | Peng Li | Jie Zhou | Yan Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Graph embedding (GE) methods embed nodes (and/or edges) in graph into a low-dimensional semantic space, and have shown its effectiveness in modeling multi-relational data. However, existing GE models are not practical in real-world applications since it overlooked the streaming nature of incoming data. To address this issue, we study the problem of continual graph representation learning which aims to continually train a GE model on new data to learn incessantly emerging multi-relational data while avoiding catastrophically forgetting old learned knowledge. Moreover, we propose a disentangle-based continual graph representation learning (DiCGRL) framework inspired by the human’s ability to learn procedural knowledge. The experimental results show that DiCGRL could effectively alleviate the catastrophic forgetting problem and outperform state-of-the-art continual learning models. The code and datasets are released on https://github.com/KXY-PUBLIC/DiCGRL.

pdf bib
Bridging the Gap between Prior and Posterior Knowledge Selection for Knowledge-Grounded Dialogue Generation
Xiuyi Chen | Fandong Meng | Peng Li | Feilong Chen | Shuang Xu | Bo Xu | Jie Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Knowledge selection plays an important role in knowledge-grounded dialogue, which is a challenging task to generate more informative responses by leveraging external knowledge. Recently, latent variable models have been proposed to deal with the diversity of knowledge selection by using both prior and posterior distributions over knowledge and achieve promising performance. However, these models suffer from a huge gap between prior and posterior knowledge selection. Firstly, the prior selection module may not learn to select knowledge properly because of lacking the necessary posterior information. Secondly, latent variable models suffer from the exposure bias that dialogue generation is based on the knowledge selected from the posterior distribution at training but from the prior distribution at inference. Here, we deal with these issues on two aspects: (1) We enhance the prior selection module with the necessary posterior information obtained from the specially designed Posterior Information Prediction Module (PIPM); (2) We propose a Knowledge Distillation Based Training Strategy (KDBTS) to train the decoder with the knowledge selected from the prior distribution, removing the exposure bias of knowledge selection. Experimental results on two knowledge-grounded dialogue datasets show that both PIPM and KDBTS achieve performance improvement over the state-of-the-art latent variable model and their combination shows further improvement.

pdf bib
Learning from Context or Names? An Empirical Study on Neural Relation Extraction
Hao Peng | Tianyu Gao | Xu Han | Yankai Lin | Peng Li | Zhiyuan Liu | Maosong Sun | Jie Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Neural models have achieved remarkable success on relation extraction (RE) benchmarks. However, there is no clear understanding what information in text affects existing RE models to make decisions and how to further improve the performance of these models. To this end, we empirically study the effect of two main information sources in text: textual context and entity mentions (names). We find that (i) while context is the main source to support the predictions, RE models also heavily rely on the information from entity mentions, most of which is type information, and (ii) existing datasets may leak shallow heuristics via entity mentions and thus contribute to the high performance on RE benchmarks. Based on the analyses, we propose an entity-masked contrastive pre-training framework for RE to gain a deeper understanding on both textual context and type information while avoiding rote memorization of entities or use of superficial cues in mentions. We carry out extensive experiments to support our views, and show that our framework can improve the effectiveness and robustness of neural models in different RE scenarios. All the code and datasets are released at https://github.com/thunlp/RE-Context-or-Names.

pdf bib
Coreferential Reasoning Learning for Language Representation
Deming Ye | Yankai Lin | Jiaju Du | Zhenghao Liu | Peng Li | Maosong Sun | Zhiyuan Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/CorefBERT.

pdf bib
Neural Gibbs Sampling for Joint Event Argument Extraction
Xiaozhi Wang | Shengyu Jia | Xu Han | Zhiyuan Liu | Juanzi Li | Peng Li | Jie Zhou
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Event Argument Extraction (EAE) aims at predicting event argument roles of entities in text, which is a crucial subtask and bottleneck of event extraction. Existing EAE methods either extract each event argument roles independently or sequentially, which cannot adequately model the joint probability distribution among event arguments and their roles. In this paper, we propose a Bayesian model named Neural Gibbs Sampling (NGS) to jointly extract event arguments. Specifically, we train two neural networks to model the prior distribution and conditional distribution over event arguments respectively and then use Gibbs sampling to approximate the joint distribution with the learned distributions. For overcoming the shortcoming of the high complexity of the original Gibbs sampling algorithm, we further apply simulated annealing to efficiently estimate the joint probability distribution over event arguments and make predictions. We conduct experiments on the two widely-used benchmark datasets ACE 2005 and TAC KBP 2016. The Experimental results show that our NGS model can achieve comparable results to existing state-of-the-art EAE methods. The source code can be obtained from https://github.com/THU-KEG/NGS.

pdf bib
More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction
Xu Han | Tianyu Gao | Yankai Lin | Hao Peng | Yaoliang Yang | Chaojun Xiao | Zhiyuan Liu | Peng Li | Jie Zhou | Maosong Sun
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Relational facts are an important component of human knowledge, which are hidden in vast amounts of text. In order to extract these facts from text, people have been working on relation extraction (RE) for years. From early pattern matching to current neural networks, existing RE methods have achieved significant progress. Yet with explosion of Web text and emergence of new relations, human knowledge is increasing drastically, and we thus require “more” from RE: a more powerful RE system that can robustly utilize more data, efficiently learn more relations, easily handle more complicated context, and flexibly generalize to more open domains. In this paper, we look back at existing RE methods, analyze key challenges we are facing nowadays, and show promising directions towards more powerful RE. We hope our view can advance this field and inspire more efforts in the community.

2019

pdf bib
NumNet: Machine Reading Comprehension with Numerical Reasoning
Qiu Ran | Yankai Lin | Peng Li | Jie Zhou | Zhiyuan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Numerical reasoning, such as addition, subtraction, sorting and counting is a critical skill in human’s reading comprehension, which has not been well considered in existing machine reading comprehension (MRC) systems. To address this issue, we propose a numerical MRC model named as NumNet, which utilizes a numerically-aware graph neural network to consider the comparing information and performs numerical reasoning over numbers in the question and passage. Our system achieves an EM-score of 64.56% on the DROP dataset, outperforming all existing machine reading comprehension models by considering the numerical relations among numbers.

pdf bib
HMEAE: Hierarchical Modular Event Argument Extraction
Xiaozhi Wang | Ziqi Wang | Xu Han | Zhiyuan Liu | Juanzi Li | Peng Li | Maosong Sun | Jie Zhou | Xiang Ren
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Existing event extraction methods classify each argument role independently, ignoring the conceptual correlations between different argument roles. In this paper, we propose a Hierarchical Modular Event Argument Extraction (HMEAE) model, to provide effective inductive bias from the concept hierarchy of event argument roles. Specifically, we design a neural module network for each basic unit of the concept hierarchy, and then hierarchically compose relevant unit modules with logical operations into a role-oriented modular network to classify a specific argument role. As many argument roles share the same high-level unit module, their correlation can be utilized to extract specific event arguments better. Experiments on real-world datasets show that HMEAE can effectively leverage useful knowledge from the concept hierarchy and significantly outperform the state-of-the-art baselines. The source code can be obtained from https://github.com/thunlp/HMEAE.

pdf bib
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
Tianyu Gao | Xu Han | Hao Zhu | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present FewRel 2.0, a more challenging task to investigate two aspects of few-shot relation classification models: (1) Can they adapt to a new domain with only a handful of instances? (2) Can they detect none-of-the-above (NOTA) relations? To construct FewRel 2.0, we build upon the FewRel dataset by adding a new test set in a quite different domain, and a NOTA relation choice. With the new dataset and extensive experimental analysis, we found (1) that the state-of-the-art few-shot relation classification models struggle on these two aspects, and (2) that the commonly-used techniques for domain adaptation and NOTA detection still cannot handle the two challenges well. Our research calls for more attention and further efforts to these two real-world issues. All details and resources about the dataset and baselines are released at https://github.com/thunlp/fewrel.

pdf bib
Adversarial Training for Weakly Supervised Event Detection
Xiaozhi Wang | Xu Han | Zhiyuan Liu | Maosong Sun | Peng Li
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Modern weakly supervised methods for event detection (ED) avoid time-consuming human annotation and achieve promising results by learning from auto-labeled data. However, these methods typically rely on sophisticated pre-defined rules as well as existing instances in knowledge bases for automatic annotation and thus suffer from low coverage, topic bias, and data noise. To address these issues, we build a large event-related candidate set with good coverage and then apply an adversarial training mechanism to iteratively identify those informative instances from the candidate set and filter out those noisy ones. The experiments on two real-world datasets show that our candidate selection and adversarial training can cooperate together to obtain more diverse and accurate training data for ED, and significantly outperform the state-of-the-art methods in various weakly supervised scenarios. The datasets and source code can be obtained from https://github.com/thunlp/Adv-ED.

pdf bib
DocRED: A Large-Scale Document-Level Relation Extraction Dataset
Yuan Yao | Deming Ye | Peng Li | Xu Han | Yankai Lin | Zhenghao Liu | Zhiyuan Liu | Lixin Huang | Jie Zhou | Maosong Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed from Wikipedia and Wikidata with three features: (1) DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text; (2) DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document; (3) along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios. In order to verify the challenges of document-level RE, we implement recent state-of-the-art methods for RE and conduct a thorough evaluation of these methods on DocRED. Empirical results show that DocRED is challenging for existing RE methods, which indicates that document-level RE remains an open problem and requires further efforts. Based on the detailed analysis on the experiments, we discuss multiple promising directions for future research. We make DocRED and the code for our baselines publicly available at https://github.com/thunlp/DocRED.

pdf bib
Towards Fine-grained Text Sentiment Transfer
Fuli Luo | Peng Li | Pengcheng Yang | Jie Zhou | Yutong Tan | Baobao Chang | Zhifang Sui | Xu Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we focus on the task of fine-grained text sentiment transfer (FGST). This task aims to revise an input sequence to satisfy a given sentiment intensity, while preserving the original semantic content. Different from the conventional sentiment transfer task that only reverses the sentiment polarity (positive/negative) of text, the FTST task requires more nuanced and fine-grained control of sentiment. To remedy this, we propose a novel Seq2SentiSeq model. Specifically, the numeric sentiment intensity value is incorporated into the decoder via a Gaussian kernel layer to finely control the sentiment intensity of the output. Moreover, to tackle the problem of lacking parallel data, we propose a cycle reinforcement learning algorithm to guide the model training. In this framework, the elaborately designed rewards can balance both sentiment transformation and content preservation, while not requiring any ground truth output. Experimental results show that our approach can outperform existing methods by a large margin in both automatic evaluation and human evaluation.

pdf bib
Key Fact as Pivot: A Two-Stage Model for Low Resource Table-to-Text Generation
Shuming Ma | Pengcheng Yang | Tianyu Liu | Peng Li | Jie Zhou | Xu Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Table-to-text generation aims to translate the structured data into the unstructured text. Most existing methods adopt the encoder-decoder framework to learn the transformation, which requires large-scale training samples. However, the lack of large parallel data is a major practical problem for many domains. In this work, we consider the scenario of low resource table-to-text generation, where only limited parallel data is available. We propose a novel model to separate the generation into two stages: key fact prediction and surface realization. It first predicts the key facts from the tables, and then generates the text with the key facts. The training of key fact prediction needs much fewer annotated data, while surface realization can be trained with pseudo parallel corpus. We evaluate our model on a biography generation dataset. Our model can achieve 27.34 BLEU score with only 1,000 parallel data, while the baseline model only obtain the performance of 9.71 BLEU score.

2018

pdf bib
Hierarchical Relation Extraction with Coarse-to-Fine Grained Attention
Xu Han | Pengfei Yu | Zhiyuan Liu | Maosong Sun | Peng Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Distantly supervised relation extraction employs existing knowledge graphs to automatically collect training data. While distant supervision is effective to scale relation extraction up to large-scale corpora, it inevitably suffers from the wrong labeling problem. Many efforts have been devoted to identifying valid instances from noisy data. However, most existing methods handle each relation in isolation, regardless of rich semantic correlations located in relation hierarchies. In this paper, we aim to incorporate the hierarchical information of relations for distantly supervised relation extraction and propose a novel hierarchical attention scheme. The multiple layers of our hierarchical attention scheme provide coarse-to-fine granularity to better identify valid instances, which is especially effective for extracting those long-tail relations. The experimental results on a large-scale benchmark dataset demonstrate that our models are capable of modeling the hierarchical information of relations and significantly outperform other baselines. The source code of this paper can be obtained from https://github.com/thunlp/HNRE.

2016

pdf bib
Multi-Granularity Chinese Word Embedding
Rongchao Yin | Quan Wang | Peng Li | Rui Li | Bin Wang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation
Jie Zhou | Ying Cao | Xuguang Wang | Peng Li | Wei Xu
Transactions of the Association for Computational Linguistics, Volume 4

Neural machine translation (NMT) aims at solving machine translation (MT) problems using neural networks and has exhibited promising results in recent years. However, most of the existing NMT models are shallow and there is still a performance gap between a single NMT model and the best conventional MT system. In this work, we introduce a new type of linear connections, named fast-forward connections, based on deep Long Short-Term Memory (LSTM) networks, and an interleaved bi-directional architecture for stacking the LSTM layers. Fast-forward connections play an essential role in propagating the gradients and building a deep topology of depth 16. On the WMT’14 English-to-French task, we achieve BLEU=37.7 with a single attention model, which outperforms the corresponding single shallow model by 6.2 BLEU points. This is the first time that a single NMT model achieves state-of-the-art performance and outperforms the best conventional model by 0.7 BLEU points. We can still achieve BLEU=36.3 even without using an attention mechanism. After special handling of unknown words and model ensembling, we obtain the best score reported to date on this task with BLEU=40.4. Our models are also validated on the more difficult WMT’14 English-to-German task.

pdf bib
Relation Extraction with Multi-instance Multi-label Convolutional Neural Networks
Xiaotian Jiang | Quan Wang | Peng Li | Bin Wang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Distant supervision is an efficient approach that automatically generates labeled data for relation extraction (RE). Traditional distantly supervised RE systems rely heavily on handcrafted features, and hence suffer from error propagation. Recently, a neural network architecture has been proposed to automatically extract features for relation classification. However, this approach follows the traditional expressed-at-least-once assumption, and fails to make full use of information across different sentences. Moreover, it ignores the fact that there can be multiple relations holding between the same entity pair. In this paper, we propose a multi-instance multi-label convolutional neural network for distantly supervised RE. It first relaxes the expressed-at-least-once assumption, and employs cross-sentence max-pooling so as to enable information sharing across different sentences. Then it handles overlapping relations by multi-label learning with a neural network classifier. Experimental results show that our approach performs significantly and consistently better than state-of-the-art methods.

pdf bib
UTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation
Peng Li | Heng Huang
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf bib
UTA DLNLP at SemEval-2016 Task 12: Deep Learning Based Natural Language Processing System for Clinical Information Identification from Clinical Notes and Pathology Reports
Peng Li | Heng Huang
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2014

pdf bib
A Neural Reordering Model for Phrase-based Translation
Peng Li | Yang Liu | Maosong Sun | Tatsuya Izuha | Dakun Zhang
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf bib
Recursive Autoencoders for ITG-Based Translation
Peng Li | Yang Liu | Maosong Sun
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf bib
A Beam Search Algorithm for ITG Word Alignment
Peng Li | Yang Liu | Maosong Sun
Proceedings of COLING 2012: Posters

2011

pdf bib
Generating Aspect-oriented Multi-Document Summarization with Event-aspect model
Peng Li | Yinglin Wang | Wei Gao | Jing Jiang
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

2010

pdf bib
Generating Templates of Entity Summaries with an Entity-Aspect Model and Pattern Mining
Peng Li | Jing Jiang | Yinglin Wang
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Fast-Champollion: A Fast and Robust Sentence Alignment Algorithm
Peng Li | Maosong Sun | Ping Xue
Coling 2010: Posters

pdf bib
Using Clustering to Improve Retrieval Evaluation without Relevance Judgments
Zhiwei Shi | Peng Li | Bin Wang
Coling 2010: Posters

2009

pdf bib
Clustering to Find Exemplar Terms for Keyphrase Extraction
Zhiyuan Liu | Peng Li | Yabin Zheng | Maosong Sun
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing