Peng Qi


2022

pdf bib
Neural Generation Meets Real People: Building a Social, Informative Open-Domain Dialogue Agent
Ethan A. Chi | Ashwin Paranjape | Abigail See | Caleb Chiam | Trenton Chang | Kathleen Kenealy | Swee Kiat Lim | Amelia Hardy | Chetanya Rastogi | Haojun Li | Alexander Iyabor | Yutong He | Hari Sowrirajan | Peng Qi | Kaushik Ram Sadagopan | Nguyet Minh Phu | Dilara Soylu | Jillian Tang | Avanika Narayan | Giovanni Campagna | Christopher Manning
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

We present Chirpy Cardinal, an open-domain social chatbot. Aiming to be both informative and conversational, our bot chats with users in an authentic, emotionally intelligent way. By integrating controlled neural generation with scaffolded, hand-written dialogue, we let both the user and bot take turns driving the conversation, producing an engaging and socially fluent experience. Deployed in the fourth iteration of the Alexa Prize Socialbot Grand Challenge, Chirpy Cardinal handled thousands of conversations per day, placing second out of nine bots with an average user rating of 3.58/5.

pdf bib
Improving Time Sensitivity for Question Answering over Temporal Knowledge Graphs
Chao Shang | Guangtao Wang | Peng Qi | Jing Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Question answering over temporal knowledge graphs (KGs) efficiently uses facts contained in a temporal KG, which records entity relations and when they occur in time, to answer natural language questions (e.g., “Who was the president of the US before Obama?”). These questions often involve three time-related challenges that previous work fail to adequately address: 1) questions often do not specify exact timestamps of interest (e.g., “Obama” instead of 2000); 2) subtle lexical differences in time relations (e.g., “before” vs “after”); 3) off-the-shelf temporal KG embeddings that previous work builds on ignore the temporal order of timestamps, which is crucial for answering temporal-order related questions. In this paper, we propose a time-sensitive question answering (TSQA) framework to tackle these problems. TSQA features a timestamp estimation module to infer the unwritten timestamp from the question. We also employ a time-sensitive KG encoder to inject ordering information into the temporal KG embeddings that TSQA is based on. With the help of techniques to reduce the search space for potential answers, TSQA significantly outperforms the previous state of the art on a new benchmark for question answering over temporal KGs, especially achieving a 32% (absolute) error reduction on complex questions that require multiple steps of reasoning over facts in the temporal KG.

2021

pdf bib
Answering Open-Domain Questions of Varying Reasoning Steps from Text
Peng Qi | Haejun Lee | Tg Sido | Christopher Manning
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks—retrieving supporting facts, reranking them, and predicting the answer from all retrieved documents—in an iterative fashion. We avoid crucial assumptions of previous work that do not transfer well to real-world settings, including exploiting knowledge of the fixed number of retrieval steps required to answer each question or using structured metadata like knowledge bases or web links that have limited availability. Instead, we design a system that can answer open-domain questions on any text collection without prior knowledge of reasoning complexity. To emulate this setting, we construct a new benchmark, called BeerQA, by combining existing one- and two-step datasets with a new collection of 530 questions that require three Wikipedia pages to answer, unifying Wikipedia corpora versions in the process. We show that our model demonstrates competitive performance on both existing benchmarks and this new benchmark. We make the new benchmark available at https://beerqa.github.io/.

pdf bib
Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification
Xiaochen Hou | Jing Huang | Guangtao Wang | Peng Qi | Xiaodong He | Bowen Zhou
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)

Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term cannot be reached within two hops on dependency trees, which requires more GCN layers to model. However, GCNs often achieve the best performance with two layers, and deeper GCNs do not bring any additional gain. Therefore, we design a novel selective attention based GCN model. On one hand, the proposed model enables the direct interaction between aspect terms and context words via the self-attention operation without the distance limitation on dependency trees. On the other hand, a top-k selection procedure is designed to locate opinion words by selecting k context words with the highest attention scores. We conduct experiments on several commonly used benchmark datasets and the results show that our proposed SA-GCN outperforms strong baseline models.

pdf bib
Entity and Evidence Guided Document-Level Relation Extraction
Kevin Huang | Peng Qi | Guangtao Wang | Tengyu Ma | Jing Huang
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Document-level relation extraction is a challenging task, requiring reasoning over multiple sentences to predict a set of relations in a document. In this paper, we propose a novel framework E2GRE (Entity and Evidence Guided Relation Extraction) that jointly extracts relations and the underlying evidence sentences by using large pretrained language model (LM) as input encoder. First, we propose to guide the pretrained LM’s attention mechanism to focus on relevant context by using attention probabilities as additional features for evidence prediction. Furthermore, instead of feeding the whole document into pretrained LMs to obtain entity representation, we concatenate document text with head entities to help LMs concentrate on parts of the document that are more related to the head entity. Our E2GRE jointly learns relation extraction and evidence prediction effectively, showing large gains on both these tasks, which we find are highly correlated.

pdf bib
Do Syntax Trees Help Pre-trained Transformers Extract Information?
Devendra Sachan | Yuhao Zhang | Peng Qi | William L. Hamilton
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Much recent work suggests that incorporating syntax information from dependency trees can improve task-specific transformer models. However, the effect of incorporating dependency tree information into pre-trained transformer models (e.g., BERT) remains unclear, especially given recent studies highlighting how these models implicitly encode syntax. In this work, we systematically study the utility of incorporating dependency trees into pre-trained transformers on three representative information extraction tasks: semantic role labeling (SRL), named entity recognition, and relation extraction. We propose and investigate two distinct strategies for incorporating dependency structure: a late fusion approach, which applies a graph neural network on the output of a transformer, and a joint fusion approach, which infuses syntax structure into the transformer attention layers. These strategies are representative of prior work, but we introduce additional model design elements that are necessary for obtaining improved performance. Our empirical analysis demonstrates that these syntax-infused transformers obtain state-of-the-art results on SRL and relation extraction tasks. However, our analysis also reveals a critical shortcoming of these models: we find that their performance gains are highly contingent on the availability of human-annotated dependency parses, which raises important questions regarding the viability of syntax-augmented transformers in real-world applications.

pdf bib
Graph Ensemble Learning over Multiple Dependency Trees for Aspect-level Sentiment Classification
Xiaochen Hou | Peng Qi | Guangtao Wang | Rex Ying | Jing Huang | Xiaodong He | Bowen Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work on aspect-level sentiment classification has demonstrated the efficacy of incorporating syntactic structures such as dependency trees with graph neural networks (GNN), but these approaches are usually vulnerable to parsing errors. To better leverage syntactic information in the face of unavoidable errors, we propose a simple yet effective graph ensemble technique, GraphMerge, to make use of the predictions from different parsers. Instead of assigning one set of model parameters to each dependency tree, we first combine the dependency relations from different parses before applying GNNs over the resulting graph. This allows GNN models to be robust to parse errors at no additional computational cost, and helps avoid overparameterization and overfitting from GNN layer stacking by introducing more connectivity into the ensemble graph. Our experiments on the SemEval 2014 Task 4 and ACL 14 Twitter datasets show that our GraphMerge model not only outperforms models with single dependency tree, but also beats other ensemble models without adding model parameters.

2020

pdf bib
Stanza: A Python Natural Language Processing Toolkit for Many Human Languages
Peng Qi | Yuhao Zhang | Yuhui Zhang | Jason Bolton | Christopher D. Manning
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce Stanza, an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Stanza features a language-agnostic fully neural pipeline for text analysis, including tokenization, multi-word token expansion, lemmatization, part-of-speech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Stanza on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Stanza includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https://stanfordnlp.github.io/stanza/.

pdf bib
Stay Hungry, Stay Focused: Generating Informative and Specific Questions in Information-Seeking Conversations
Peng Qi | Yuhao Zhang | Christopher D. Manning
Findings of the Association for Computational Linguistics: EMNLP 2020

We investigate the problem of generating informative questions in information-asymmetric conversations. Unlike previous work on question generation which largely assumes knowledge of what the answer might be, we are interested in the scenario where the questioner is not given the context from which answers are drawn, but must reason pragmatically about how to acquire new information, given the shared conversation history. We identify two core challenges: (1) formally defining the informativeness of potential questions, and (2) exploring the prohibitively large space of potential questions to find the good candidates. To generate pragmatic questions, we use reinforcement learning to optimize an informativeness metric we propose, combined with a reward function designed to promote more specific questions. We demonstrate that the resulting pragmatic questioner substantially improves the informativeness and specificity of questions generated over a baseline model, as evaluated by our metrics as well as humans.

2019

pdf bib
Answering Complex Open-domain Questions Through Iterative Query Generation
Peng Qi | Xiaowen Lin | Leo Mehr | Zijian Wang | Christopher D. Manning
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

It is challenging for current one-step retrieve-and-read question answering (QA) systems to answer questions like “Which novel by the author of ‘Armada’ will be adapted as a feature film by Steven Spielberg?” because the question seldom contains retrievable clues about the missing entity (here, the author). Answering such a question requires multi-hop reasoning where one must gather information about the missing entity (or facts) to proceed with further reasoning. We present GoldEn (Gold Entity) Retriever, which iterates between reading context and retrieving more supporting documents to answer open-domain multi-hop questions. Instead of using opaque and computationally expensive neural retrieval models, GoldEn Retriever generates natural language search queries given the question and available context, and leverages off-the-shelf information retrieval systems to query for missing entities. This allows GoldEn Retriever to scale up efficiently for open-domain multi-hop reasoning while maintaining interpretability. We evaluate GoldEn Retriever on the recently proposed open-domain multi-hop QA dataset, HotpotQA, and demonstrate that it outperforms the best previously published model despite not using pretrained language models such as BERT.

2018

pdf bib
Graph Convolution over Pruned Dependency Trees Improves Relation Extraction
Yuhao Zhang | Peng Qi | Christopher D. Manning
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Dependency trees help relation extraction models capture long-range relations between words. However, existing dependency-based models either neglect crucial information (e.g., negation) by pruning the dependency trees too aggressively, or are computationally inefficient because it is difficult to parallelize over different tree structures. We propose an extension of graph convolutional networks that is tailored for relation extraction, which pools information over arbitrary dependency structures efficiently in parallel. To incorporate relevant information while maximally removing irrelevant content, we further apply a novel pruning strategy to the input trees by keeping words immediately around the shortest path between the two entities among which a relation might hold. The resulting model achieves state-of-the-art performance on the large-scale TACRED dataset, outperforming existing sequence and dependency-based neural models. We also show through detailed analysis that this model has complementary strengths to sequence models, and combining them further improves the state of the art.

pdf bib
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang | Peng Qi | Saizheng Zhang | Yoshua Bengio | William Cohen | Ruslan Salakhutdinov | Christopher D. Manning
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems’ ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.

pdf bib
Sharp Nearby, Fuzzy Far Away: How Neural Language Models Use Context
Urvashi Khandelwal | He He | Peng Qi | Dan Jurafsky
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We know very little about how neural language models (LM) use prior linguistic context. In this paper, we investigate the role of context in an LSTM LM, through ablation studies. Specifically, we analyze the increase in perplexity when prior context words are shuffled, replaced, or dropped. On two standard datasets, Penn Treebank and WikiText-2, we find that the model is capable of using about 200 tokens of context on average, but sharply distinguishes nearby context (recent 50 tokens) from the distant history. The model is highly sensitive to the order of words within the most recent sentence, but ignores word order in the long-range context (beyond 50 tokens), suggesting the distant past is modeled only as a rough semantic field or topic. We further find that the neural caching model (Grave et al., 2017b) especially helps the LSTM to copy words from within this distant context. Overall, our analysis not only provides a better understanding of how neural LMs use their context, but also sheds light on recent success from cache-based models.

pdf bib
Universal Dependency Parsing from Scratch
Peng Qi | Timothy Dozat | Yuhao Zhang | Christopher D. Manning
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

This paper describes Stanford’s system at the CoNLL 2018 UD Shared Task. We introduce a complete neural pipeline system that takes raw text as input, and performs all tasks required by the shared task, ranging from tokenization and sentence segmentation, to POS tagging and dependency parsing. Our single system submission achieved very competitive performance on big treebanks. Moreover, after fixing an unfortunate bug, our corrected system would have placed the 2nd, 1st, and 3rd on the official evaluation metrics LAS, MLAS, and BLEX, and would have outperformed all submission systems on low-resource treebank categories on all metrics by a large margin. We further show the effectiveness of different model components through extensive ablation studies.

2017

pdf bib
Arc-swift: A Novel Transition System for Dependency Parsing
Peng Qi | Christopher D. Manning
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Transition-based dependency parsers often need sequences of local shift and reduce operations to produce certain attachments. Correct individual decisions hence require global information about the sentence context and mistakes cause error propagation. This paper proposes a novel transition system, arc-swift, that enables direct attachments between tokens farther apart with a single transition. This allows the parser to leverage lexical information more directly in transition decisions. Hence, arc-swift can achieve significantly better performance with a very small beam size. Our parsers reduce error by 3.7–7.6% relative to those using existing transition systems on the Penn Treebank dependency parsing task and English Universal Dependencies.

pdf bib
Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task
Timothy Dozat | Peng Qi | Christopher D. Manning
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

This paper describes the neural dependency parser submitted by Stanford to the CoNLL 2017 Shared Task on parsing Universal Dependencies. Our system uses relatively simple LSTM networks to produce part of speech tags and labeled dependency parses from segmented and tokenized sequences of words. In order to address the rare word problem that abounds in languages with complex morphology, we include a character-based word representation that uses an LSTM to produce embeddings from sequences of characters. Our system was ranked first according to all five relevant metrics for the system: UPOS tagging (93.09%), XPOS tagging (82.27%), unlabeled attachment score (81.30%), labeled attachment score (76.30%), and content word labeled attachment score (72.57%).