Peng Qiu
2024
BASES: Large-scale Web Search User Simulation with Large Language Model based Agents
Ruiyang Ren
|
Peng Qiu
|
Yingqi Qu
|
Jing Liu
|
Xin Zhao
|
Hua Wu
|
Ji-Rong Wen
|
Haifeng Wang
Findings of the Association for Computational Linguistics: EMNLP 2024
Due to the excellent capacities of large language models (LLMs), it becomes feasible to develop LLM-based agents for reliable user simulation. Considering the scarcity and limit (e.g., privacy issues) of real user data, in this paper, we conduct large-scale user simulations for the web search scenario to improve the analysis and modeling of user search behavior. Specially, we propose BASES, a novel user simulation framework with LLM-based agents, designed to facilitate comprehensive simulations of web search user behaviors. Our simulation framework can generate unique user profiles at scale, which subsequently leads to diverse search behaviors. To demonstrate the effectiveness of BASES, we conduct evaluation experiments based on two human benchmarks in both Chinese and English, demonstrating that BASES can effectively simulate large-scale human-like search behaviors. To further accommodate the research on web search, we develop WARRIORS, a new large-scale dataset encompassing web search user behaviors, including both Chinese and English versions, which can greatly bolster research in the field of information retrieval.
Search
Fix data
Co-authors
- Jing Liu (刘晶) 1
- Yingqi Qu 1
- Ruiyang Ren 1
- Haifeng Wang 1
- Ji-Rong Wen 1
- show all...