Pengfei Liu


2021

pdf bib
Towards More Fine-grained and Reliable NLP Performance Prediction
Zihuiwen Ye | Pengfei Liu | Jinlan Fu | Graham Neubig
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Performance prediction, the task of estimating a system’s performance without performing experiments, allows us to reduce the experimental burden caused by the combinatorial explosion of different datasets, languages, tasks, and models. In this paper, we make two contributions to improving performance prediction for NLP tasks. First, we examine performance predictors not only for holistic measures of accuracy like F1 or BLEU, but also fine-grained performance measures such as accuracy over individual classes of examples. Second, we propose methods to understand the reliability of a performance prediction model from two angles: confidence intervals and calibration. We perform an analysis of four types of NLP tasks, and both demonstrate the feasibility of fine-grained performance prediction and the necessity to perform reliability analysis for performance prediction methods in the future.

pdf bib
RefSum: Refactoring Neural Summarization
Yixin Liu | Zi-Yi Dou | Pengfei Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Although some recent works show potential complementarity among different state-of-the-art systems, few works try to investigate this problem in text summarization. Researchers in other areas commonly refer to the techniques of reranking or stacking to approach this problem. In this work, we highlight several limitations of previous methods, which motivates us to present a new framework Refactor that provides a unified view of text summarization and summaries combination. Experimentally, we perform a comprehensive evaluation that involves twenty-two base systems, four datasets, and three different application scenarios. Besides new state-of-the-art results on CNN/DailyMail dataset (46.18 ROUGE-1), we also elaborate on how our proposed method addresses the limitations of the traditional methods and the effectiveness of the Refactor model sheds light on insight for performance improvement. Our system can be directly used by other researchers as an off-the-shelf tool to achieve further performance improvements. We open-source all the code and provide a convenient interface to use it: https://github.com/yixinL7/Refactoring-Summarization.

pdf bib
Larger-Context Tagging: When and Why Does It Work?
Jinlan Fu | Liangjing Feng | Qi Zhang | Xuanjing Huang | Pengfei Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The development of neural networks and pretraining techniques has spawned many sentence-level tagging systems that achieved superior performance on typical benchmarks. However, a relatively less discussed topic is what if more context information is introduced into current top-scoring tagging systems. Although several existing works have attempted to shift tagging systems from sentence-level to document-level, there is still no consensus conclusion about when and why it works, which limits the applicability of the larger-context approach in tagging tasks. In this paper, instead of pursuing a state-of-the-art tagging system by architectural exploration, we focus on investigating when and why the larger-context training, as a general strategy, can work. To this end, we conduct a thorough comparative study on four proposed aggregators for context information collecting and present an attribute-aided evaluation method to interpret the improvement brought by larger-context training. Experimentally, we set up a testbed based on four tagging tasks and thirteen datasets. Hopefully, our preliminary observations can deepen the understanding of larger-context training and enlighten more follow-up works on the use of contextual information.

pdf bib
Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa
Junqi Dai | Hang Yan | Tianxiang Sun | Pengfei Liu | Xipeng Qiu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Aspect-based Sentiment Analysis (ABSA), aiming at predicting the polarities for aspects, is a fine-grained task in the field of sentiment analysis. Previous work showed syntactic information, e.g. dependency trees, can effectively improve the ABSA performance. Recently, pre-trained models (PTMs) also have shown their effectiveness on ABSA. Therefore, the question naturally arises whether PTMs contain sufficient syntactic information for ABSA so that we can obtain a good ABSA model only based on PTMs. In this paper, we firstly compare the induced trees from PTMs and the dependency parsing trees on several popular models for the ABSA task, showing that the induced tree from fine-tuned RoBERTa (FT-RoBERTa) outperforms the parser-provided tree. The further analysis experiments reveal that the FT-RoBERTa Induced Tree is more sentiment-word-oriented and could benefit the ABSA task. The experiments also show that the pure RoBERTa-based model can outperform or approximate to the previous SOTA performances on six datasets across four languages since it implicitly incorporates the task-oriented syntactic information.

pdf bib
GSum: A General Framework for Guided Neural Abstractive Summarization
Zi-Yi Dou | Pengfei Liu | Hiroaki Hayashi | Zhengbao Jiang | Graham Neubig
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Neural abstractive summarization models are flexible and can produce coherent summaries, but they are sometimes unfaithful and can be difficult to control. While previous studies attempt to provide different types of guidance to control the output and increase faithfulness, it is not clear how these strategies compare and contrast to each other. In this paper, we propose a general and extensible guided summarization framework (GSum) that can effectively take different kinds of external guidance as input, and we perform experiments across several different varieties. Experiments demonstrate that this model is effective, achieving state-of-the-art performance according to ROUGE on 4 popular summarization datasets when using highlighted sentences as guidance. In addition, we show that our guided model can generate more faithful summaries and demonstrate how different types of guidance generate qualitatively different summaries, lending a degree of controllability to the learned models.

pdf bib
CitationIE: Leveraging the Citation Graph for Scientific Information Extraction
Vijay Viswanathan | Graham Neubig | Pengfei Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Automatically extracting key information from scientific documents has the potential to help scientists work more efficiently and accelerate the pace of scientific progress. Prior work has considered extracting document-level entity clusters and relations end-to-end from raw scientific text, which can improve literature search and help identify methods and materials for a given problem. Despite the importance of this task, most existing works on scientific information extraction (SciIE) consider extraction solely based on the content of an individual paper, without considering the paper’s place in the broader literature. In contrast to prior work, we augment our text representations by leveraging a complementary source of document context: the citation graph of referential links between citing and cited papers. On a test set of English-language scientific documents, we show that simple ways of utilizing the structure and content of the citation graph can each lead to significant gains in different scientific information extraction tasks. When these tasks are combined, we observe a sizable improvement in end-to-end information extraction over the state-of-the-art, suggesting the potential for future work along this direction. We release software tools to facilitate citation-aware SciIE development.

pdf bib
SpanNER: Named Entity Re-/Recognition as Span Prediction
Jinlan Fu | Xuanjing Huang | Pengfei Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent years have seen the paradigm shift of Named Entity Recognition (NER) systems from sequence labeling to span prediction. Despite its preliminary effectiveness, the span prediction model’s architectural bias has not been fully understood. In this paper, we first investigate the strengths and weaknesses when the span prediction model is used for named entity recognition compared with the sequence labeling framework and how to further improve it, which motivates us to make complementary advantages of systems based on different paradigms. We then reveal that span prediction, simultaneously, can serve as a system combiner to re-recognize named entities from different systems’ outputs. We experimentally implement 154 systems on 11 datasets, covering three languages, comprehensive results show the effectiveness of span prediction models that both serve as base NER systems and system combiners. We make all codes and datasets available: https://github.com/neulab/spanner, as well as an online system demo: http://spanner.sh. Our model also has been deployed into the ExplainaBoard platform, which allows users to flexibly perform a system combination of top-scoring systems in an interactive way: http://explainaboard.nlpedia.ai/leaderboard/task-ner/.

pdf bib
SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization
Yixin Liu | Pengfei Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

In this paper, we present a conceptually simple while empirically powerful framework for abstractive summarization, SimCLS, which can bridge the gap between the learning objective and evaluation metrics resulting from the currently dominated sequence-to-sequence learning framework by formulating text generation as a reference-free evaluation problem (i.e., quality estimation) assisted by contrastive learning. Experimental results show that, with minor modification over existing top-scoring systems, SimCLS can improve the performance of existing top-performing models by a large margin. Particularly, 2.51 absolute improvement against BART and 2.50 over PEGASUS w.r.t ROUGE-1 on the CNN/DailyMail dataset, driving the state-of-the-art performance to a new level. We have open-sourced our codes and results: https://github.com/yixinL7/SimCLS. Results of our proposed models have been deployed into ExplainaBoard platform, which allows researchers to understand our systems in a more fine-grained way.

pdf bib
ExplainaBoard: An Explainable Leaderboard for NLP
Pengfei Liu | Jinlan Fu | Yang Xiao | Weizhe Yuan | Shuaichen Chang | Junqi Dai | Yixin Liu | Zihuiwen Ye | Graham Neubig
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

With the rapid development of NLP research, leaderboards have emerged as one tool to track the performance of various systems on various NLP tasks. They are effective in this goal to some extent, but generally present a rather simplistic one-dimensional view of the submitted systems, communicated only through holistic accuracy numbers. In this paper, we present a new conceptualization and implementation of NLP evaluation: the ExplainaBoard, which in addition to inheriting the functionality of the standard leaderboard, also allows researchers to (i) diagnose strengths and weaknesses of a single system (e.g. what is the best-performing system bad at?) (ii) interpret relationships between multiple systems. (e.g. where does system A outperform system B? What if we combine systems A, B and C?) and (iii) examine prediction results closely (e.g. what are common errors made by multiple systems or in what contexts do particular errors occur?). So far, ExplainaBoard covers more than 400 systems, 50 datasets, 40 languages, and 12 tasks. We not only released an online platform at the website but also make our evaluation tool an API with MIT Licence at Github and PyPi that allows users to conveniently assess their models offline. We additionally release all output files from systems that we have run or collected to motivate “output-driven” research in the future.

pdf bib
How well do you know your summarization datasets?
Priyam Tejaswin | Dhruv Naik | Pengfei Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Metrics also Disagree in the Low Scoring Range: Revisiting Summarization Evaluation Metrics
Manik Bhandari | Pranav Narayan Gour | Atabak Ashfaq | Pengfei Liu
Proceedings of the 28th International Conference on Computational Linguistics

In text summarization, evaluating the efficacy of automatic metrics without human judgments has become recently popular. One exemplar work (Peyrard, 2019) concludes that automatic metrics strongly disagree when ranking high-scoring summaries. In this paper, we revisit their experiments and find that their observations stem from the fact that metrics disagree in ranking summaries from any narrow scoring range. We hypothesize that this may be because summaries are similar to each other in a narrow scoring range and are thus, difficult to rank. Apart from the width of the scoring range of summaries, we analyze three other properties that impact inter-metric agreement - Ease of Summarization, Abstractiveness, and Coverage.

pdf bib
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems
Yiran Chen | Pengfei Liu | Ming Zhong | Zi-Yi Dou | Danqing Wang | Xipeng Qiu | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

Neural network-based models augmented with unsupervised pre-trained knowledge have achieved impressive performance on text summarization. However, most existing evaluation methods are limited to an in-domain setting, where summarizers are trained and evaluated on the same dataset. We argue that this approach can narrow our understanding of the generalization ability for different summarization systems. In this paper, we perform an in-depth analysis of characteristics of different datasets and investigate the performance of different summarization models under a cross-dataset setting, in which a summarizer trained on one corpus will be evaluated on a range of out-of-domain corpora. A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways (i.e. abstractive and extractive) on model generalization ability. Further, experimental results shed light on the limitations of existing summarizers. Brief introduction and supplementary code can be found in https://github.com/zide05/CDEvalSumm.

pdf bib
Target-Guided Structured Attention Network for Target-Dependent Sentiment Analysis
Ji Zhang | Chengyao Chen | Pengfei Liu | Chao He | Cane Wing-Ki Leung
Transactions of the Association for Computational Linguistics, Volume 8

Target-dependent sentiment analysis (TDSA) aims to classify the sentiment of a text towards a given target. The major challenge of this task lies in modeling the semantic relatedness between a target and its context sentence. This paper proposes a novel Target-Guided Structured Attention Network (TG-SAN), which captures target-related contexts for TDSA in a fine-to-coarse manner. Given a target and its context sentence, the proposed TG-SAN first identifies multiple semantic segments from the sentence using a target-guided structured attention mechanism. It then fuses the extracted segments based on their relatedness with the target for sentiment classification. We present comprehensive comparative experiments on three benchmarks with three major findings. First, TG-SAN outperforms the state-of-the-art by up to 1.61% and 3.58% in terms of accuracy and Marco-F1, respectively. Second, it shows a strong advantage in determining the sentiment of a target when the context sentence contains multiple semantic segments. Lastly, visualization results show that the attention scores produced by TG-SAN are highly interpretable

pdf bib
Extractive Summarization as Text Matching
Ming Zhong | Pengfei Liu | Yiran Chen | Danqing Wang | Xipeng Qiu | Xuanjing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper creates a paradigm shift with regard to the way we build neural extractive summarization systems. Instead of following the commonly used framework of extracting sentences individually and modeling the relationship between sentences, we formulate the extractive summarization task as a semantic text matching problem, in which a source document and candidate summaries will be (extracted from the original text) matched in a semantic space. Notably, this paradigm shift to semantic matching framework is well-grounded in our comprehensive analysis of the inherent gap between sentence-level and summary-level extractors based on the property of the dataset. Besides, even instantiating the framework with a simple form of a matching model, we have driven the state-of-the-art extractive result on CNN/DailyMail to a new level (44.41 in ROUGE-1). Experiments on the other five datasets also show the effectiveness of the matching framework. We believe the power of this matching-based summarization framework has not been fully exploited. To encourage more instantiations in the future, we have released our codes, processed dataset, as well as generated summaries in https://github.com/maszhongming/MatchSum.

pdf bib
Heterogeneous Graph Neural Networks for Extractive Document Summarization
Danqing Wang | Pengfei Liu | Yining Zheng | Xipeng Qiu | Xuanjing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

As a crucial step in extractive document summarization, learning cross-sentence relations has been explored by a plethora of approaches. An intuitive way is to put them in the graph-based neural network, which has a more complex structure for capturing inter-sentence relationships. In this paper, we present a heterogeneous graph-based neural network for extractive summarization (HETERSUMGRAPH), which contains semantic nodes of different granularity levels apart from sentences. These additional nodes act as the intermediary between sentences and enrich the cross-sentence relations. Besides, our graph structure is flexible in natural extension from a single-document setting to multi-document via introducing document nodes. To our knowledge, we are the first one to introduce different types of nodes into graph-based neural networks for extractive document summarization and perform a comprehensive qualitative analysis to investigate their benefits. The code will be released on Github.

pdf bib
RethinkCWS: Is Chinese Word Segmentation a Solved Task?
Jinlan Fu | Pengfei Liu | Qi Zhang | Xuanjing Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The performance of the Chinese Word Segmentation (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks, especially the successful use of large pre-trained models. In this paper, we take stock of what we have achieved and rethink what’s left in the CWS task. Methodologically, we propose a fine-grained evaluation for existing CWS systems, which not only allows us to diagnose the strengths and weaknesses of existing models (under the in-dataset setting), but enables us to quantify the discrepancy between different criterion and alleviate the negative transfer problem when doing multi-criteria learning. Strategically, despite not aiming to propose a novel model in this paper, our comprehensive experiments on eight models and seven datasets, as well as thorough analysis, could search for some promising direction for future research. We make all codes publicly available and release an interface that can quickly evaluate and diagnose user’s models: https://github.com/neulab/InterpretEval

pdf bib
Interpretable Multi-dataset Evaluation for Named Entity Recognition
Jinlan Fu | Pengfei Liu | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

With the proliferation of models for natural language processing tasks, it is even harder to understand the differences between models and their relative merits. Simply looking at differences between holistic metrics such as accuracy, BLEU, or F1 does not tell us why or how particular methods perform differently and how diverse datasets influence the model design choices. In this paper, we present a general methodology for interpretable evaluation for the named entity recognition (NER) task. The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them, identifying the strengths and weaknesses of current systems. By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area: https://github.com/neulab/InterpretEval

pdf bib
Re-evaluating Evaluation in Text Summarization
Manik Bhandari | Pranav Narayan Gour | Atabak Ashfaq | Pengfei Liu | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Automated evaluation metrics as a stand-in for manual evaluation are an essential part of the development of text-generation tasks such as text summarization. However, while the field has progressed, our standard metrics have not – for nearly 20 years ROUGE has been the standard evaluation in most summarization papers. In this paper, we make an attempt to re-evaluate the evaluation method for text summarization: assessing the reliability of automatic metrics using top-scoring system outputs, both abstractive and extractive, on recently popular datasets for both system-level and summary-level evaluation settings. We find that conclusions about evaluation metrics on older datasets do not necessarily hold on modern datasets and systems. We release a dataset of human judgments that are collected from 25 top-scoring neural summarization systems (14 abstractive and 11 extractive).

2019

pdf bib
A Closer Look at Data Bias in Neural Extractive Summarization Models
Ming Zhong | Danqing Wang | Pengfei Liu | Xipeng Qiu | Xuanjing Huang
Proceedings of the 2nd Workshop on New Frontiers in Summarization

In this paper, we take stock of the current state of summarization datasets and explore how different factors of datasets influence the generalization behaviour of neural extractive summarization models. Specifically, we first propose several properties of datasets, which matter for the generalization of summarization models. Then we build the connection between priors residing in datasets and model designs, analyzing how different properties of datasets influence the choices of model structure design and training methods. Finally, by taking a typical dataset as an example, we rethink the process of the model design based on the experience of the above analysis. We demonstrate that when we have a deep understanding of the characteristics of datasets, a simple approach can bring significant improvements to the existing state-of-the-art model.

pdf bib
Star-Transformer
Qipeng Guo | Xipeng Qiu | Pengfei Liu | Yunfan Shao | Xiangyang Xue | Zheng Zhang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Although Transformer has achieved great successes on many NLP tasks, its heavy structure with fully-connected attention connections leads to dependencies on large training data. In this paper, we present Star-Transformer, a lightweight alternative by careful sparsification. To reduce model complexity, we replace the fully-connected structure with a star-shaped topology, in which every two non-adjacent nodes are connected through a shared relay node. Thus, complexity is reduced from quadratic to linear, while preserving the capacity to capture both local composition and long-range dependency. The experiments on four tasks (22 datasets) show that Star-Transformer achieved significant improvements against the standard Transformer for the modestly sized datasets.

pdf bib
Searching for Effective Neural Extractive Summarization: What Works and What’s Next
Ming Zhong | Pengfei Liu | Danqing Wang | Xipeng Qiu | Xuanjing Huang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The recent years have seen remarkable success in the use of deep neural networks on text summarization. However, there is no clear understanding of why they perform so well, or how they might be improved. In this paper, we seek to better understand how neural extractive summarization systems could benefit from different types of model architectures, transferable knowledge and learning schemas. Besides, we find an effective way to improve the current framework and achieve the state-of-the-art result on CNN/DailyMail by a large margin based on our observations and analysis. Hopefully, our work could provide more hints for future research on extractive summarization.

pdf bib
TIGS: An Inference Algorithm for Text Infilling with Gradient Search
Dayiheng Liu | Jie Fu | Pengfei Liu | Jiancheng Lv
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Text infilling aims at filling in the missing part of a sentence or paragraph, which has been applied to a variety of real-world natural language generation scenarios. Given a well-trained sequential generative model, it is challenging for its unidirectional decoder to generate missing symbols conditioned on the past and future information around the missing part. In this paper, we propose an iterative inference algorithm based on gradient search, which could be the first inference algorithm that can be broadly applied to any neural sequence generative models for text infilling tasks. Extensive experimental comparisons show the effectiveness and efficiency of the proposed method on three different text infilling tasks with various mask ratios and different mask strategies, comparing with five state-of-the-art methods.

2017

pdf bib
Adversarial Multi-task Learning for Text Classification
Pengfei Liu | Xipeng Qiu | Xuanjing Huang
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task learning framework, alleviating the shared and private latent feature spaces from interfering with each other. We conduct extensive experiments on 16 different text classification tasks, which demonstrates the benefits of our approach. Besides, we show that the shared knowledge learned by our proposed model can be regarded as off-the-shelf knowledge and easily transferred to new tasks. The datasets of all 16 tasks are publicly available at http://nlp.fudan.edu.cn/data/.

pdf bib
Idiom-Aware Compositional Distributed Semantics
Pengfei Liu | Kaiyu Qian | Xipeng Qiu | Xuanjing Huang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Idioms are peculiar linguistic constructions that impose great challenges for representing the semantics of language, especially in current prevailing end-to-end neural models, which assume that the semantics of a phrase or sentence can be literally composed from its constitutive words. In this paper, we propose an idiom-aware distributed semantic model to build representation of sentences on the basis of understanding their contained idioms. Our models are grounded in the literal-first psycholinguistic hypothesis, which can adaptively learn semantic compositionality of a phrase literally or idiomatically. To better evaluate our models, we also construct an idiom-enriched sentiment classification dataset with considerable scale and abundant peculiarities of idioms. The qualitative and quantitative experimental analyses demonstrate the efficacy of our models.

2016

pdf bib
Deep Multi-Task Learning with Shared Memory for Text Classification
Pengfei Liu | Xipeng Qiu | Xuanjing Huang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Modelling Interaction of Sentence Pair with Coupled-LSTMs
Pengfei Liu | Xipeng Qiu | Yaqian Zhou | Jifan Chen | Xuanjing Huang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Deep Fusion LSTMs for Text Semantic Matching
Pengfei Liu | Xipeng Qiu | Jifan Chen | Xuanjing Huang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Implicit Discourse Relation Detection via a Deep Architecture with Gated Relevance Network
Jifan Chen | Qi Zhang | Pengfei Liu | Xipeng Qiu | Xuanjing Huang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Long Short-Term Memory Neural Networks for Chinese Word Segmentation
Xinchi Chen | Xipeng Qiu | Chenxi Zhu | Pengfei Liu | Xuanjing Huang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings
Pengfei Liu | Shafiq Joty | Helen Meng
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Multi-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and Documents
Pengfei Liu | Xipeng Qiu | Xinchi Chen | Shiyu Wu | Xuanjing Huang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
SeemGo: Conditional Random Fields Labeling and Maximum Entropy Classification for Aspect Based Sentiment Analysis
Pengfei Liu | Helen Meng
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)