Pengfei Yu


pdf bib
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation ( We also include a video demonstrating the system.

pdf bib
COVID-19 Claim Radar: A Structured Claim Extraction and Tracking System
Manling Li | Revanth Gangi Reddy | Ziqi Wang | Yi-shyuan Chiang | Tuan Lai | Pengfei Yu | Zixuan Zhang | Heng Ji
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

To tackle the challenge of accurate and timely communication regarding the COVID-19 pandemic, we present a COVID-19 Claim Radar to automatically extract supporting and refuting claims on a daily basis. We provide a comprehensive structured view of claims, including rich claim attributes (such as claimers and claimer affiliations) and associated knowledge elements as claim semantics (such as events, relations and entities), enabling users to explore equivalent, refuting, or supporting claims with structural evidence, such as shared claimers, similar centroid events and arguments. In order to consolidate claim structures at the corpus-level, we leverage Wikidata as the hub to merge coreferential knowledge elements. The system automatically provides users a comprehensive exposure to COVID-19 related claims, their importance, and their interconnections. The system is publicly available at GitHub and DockerHub, with complete documentation.

pdf bib
Building an Event Extractor with Only a Few Examples
Pengfei Yu | Zixuan Zhang | Clare Voss | Jonathan May | Heng Ji
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing



pdf bib
Lifelong Event Detection with Knowledge Transfer
Pengfei Yu | Heng Ji | Prem Natarajan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Traditional supervised Information Extraction (IE) methods can extract structured knowledge elements from unstructured data, but it is limited to a pre-defined target ontology. In reality, the ontology of interest may change over time, adding emergent new types or more fine-grained subtypes. We propose a new lifelong learning framework to address this challenge. We focus on lifelong event detection as an exemplar case and propose a new problem formulation that is also generalizable to other IE tasks. In event detection and more general IE tasks, rich correlations or semantic relatedness exist among hierarchical knowledge element types. In our proposed framework, knowledge is being transferred between learned old event types and new event types. Specifically, we update old knowledge with new event types’ mentions using a self-training loss. In addition, we aggregate old event types’ representations based on their similarities with new event types to initialize the new event types’ representations. Experimental results show that our framework outperforms competitive baselines with a 5.1% absolute gain in the F1 score. Moreover, our proposed framework can boost the F1 score for over 30% absolute gain on some new long-tail rare event types with few training instances. Our knowledge transfer module improves performance on both learned event types and new event types under the lifelong learning setting, showing that it helps consolidate old knowledge and improve novel knowledge acquisition.


pdf bib
Hierarchical Relation Extraction with Coarse-to-Fine Grained Attention
Xu Han | Pengfei Yu | Zhiyuan Liu | Maosong Sun | Peng Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Distantly supervised relation extraction employs existing knowledge graphs to automatically collect training data. While distant supervision is effective to scale relation extraction up to large-scale corpora, it inevitably suffers from the wrong labeling problem. Many efforts have been devoted to identifying valid instances from noisy data. However, most existing methods handle each relation in isolation, regardless of rich semantic correlations located in relation hierarchies. In this paper, we aim to incorporate the hierarchical information of relations for distantly supervised relation extraction and propose a novel hierarchical attention scheme. The multiple layers of our hierarchical attention scheme provide coarse-to-fine granularity to better identify valid instances, which is especially effective for extracting those long-tail relations. The experimental results on a large-scale benchmark dataset demonstrate that our models are capable of modeling the hierarchical information of relations and significantly outperform other baselines. The source code of this paper can be obtained from

pdf bib
FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation
Xu Han | Hao Zhu | Pengfei Yu | Ziyun Wang | Yuan Yao | Zhiyuan Liu | Maosong Sun
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present a Few-Shot Relation Classification Dataset (dataset), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research.