Pengyu Cheng


pdf bib
Improving Disentangled Text Representation Learning with Information-Theoretic Guidance
Pengyu Cheng | Martin Renqiang Min | Dinghan Shen | Christopher Malon | Yizhe Zhang | Yitong Li | Lawrence Carin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.


pdf bib
Learning Compressed Sentence Representations for On-Device Text Processing
Dinghan Shen | Pengyu Cheng | Dhanasekar Sundararaman | Xinyuan Zhang | Qian Yang | Meng Tang | Asli Celikyilmaz | Lawrence Carin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Vector representations of sentences, trained on massive text corpora, are widely used as generic sentence embeddings across a variety of NLP problems. The learned representations are generally assumed to be continuous and real-valued, giving rise to a large memory footprint and slow retrieval speed, which hinders their applicability to low-resource (memory and computation) platforms, such as mobile devices. In this paper, we propose four different strategies to transform continuous and generic sentence embeddings into a binarized form, while preserving their rich semantic information. The introduced methods are evaluated across a wide range of downstream tasks, where the binarized sentence embeddings are demonstrated to degrade performance by only about 2% relative to their continuous counterparts, while reducing the storage requirement by over 98%. Moreover, with the learned binary representations, the semantic relatedness of two sentences can be evaluated by simply calculating their Hamming distance, which is more computational efficient compared with the inner product operation between continuous embeddings. Detailed analysis and case study further validate the effectiveness of proposed methods.

pdf bib
Improving Textual Network Embedding with Global Attention via Optimal Transport
Liqun Chen | Guoyin Wang | Chenyang Tao | Dinghan Shen | Pengyu Cheng | Xinyuan Zhang | Wenlin Wang | Yizhe Zhang | Lawrence Carin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Constituting highly informative network embeddings is an essential tool for network analysis. It encodes network topology, along with other useful side information, into low dimensional node-based feature representations that can be exploited by statistical modeling. This work focuses on learning context-aware network embeddings augmented with text data. We reformulate the network embedding problem, and present two novel strategies to improve over traditional attention mechanisms: (i) a content-aware sparse attention module based on optimal transport; and (ii) a high-level attention parsing module. Our approach yields naturally sparse and self-normalized relational inference. It can capture long-term interactions between sequences, thus addressing the challenges faced by existing textual network embedding schemes. Extensive experiments are conducted to demonstrate our model can consistently outperform alternative state-of-the-art methods.