Pepa Atanasova


2021

pdf bib
SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification
Sara Rosenthal | Pepa Atanasova | Georgi Karadzhov | Marcos Zampieri | Preslav Nakov
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Generating Fact Checking Explanations
Pepa Atanasova | Jakob Grue Simonsen | Christina Lioma | Isabelle Augenstein
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Most existing work on automated fact checking is concerned with predicting the veracity of claims based on metadata, social network spread, language used in claims, and, more recently, evidence supporting or denying claims. A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process – generating justifications for verdicts on claims. This paper provides the first study of how these explanations can be generated automatically based on available claim context, and how this task can be modelled jointly with veracity prediction. Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system. The results of a manual evaluation further suggest that the informativeness, coverage and overall quality of the generated explanations are also improved in the multi-task model.

pdf bib
Generating Label Cohesive and Well-Formed Adversarial Claims
Pepa Atanasova | Dustin Wright | Isabelle Augenstein
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Adversarial attacks reveal important vulnerabilities and flaws of trained models. One potent type of attack are universal adversarial triggers, which are individual n-grams that, when appended to instances of a class under attack, can trick a model into predicting a target class. However, for inference tasks such as fact checking, these triggers often inadvertently invert the meaning of instances they are inserted in. In addition, such attacks produce semantically nonsensical inputs, as they simply concatenate triggers to existing samples. Here, we investigate how to generate adversarial attacks against fact checking systems that preserve the ground truth meaning and are semantically valid. We extend the HotFlip attack algorithm used for universal trigger generation by jointly minimizing the target class loss of a fact checking model and the entailment class loss of an auxiliary natural language inference model. We then train a conditional language model to generate semantically valid statements, which include the found universal triggers. We find that the generated attacks maintain the directionality and semantic validity of the claim better than previous work.

pdf bib
A Diagnostic Study of Explainability Techniques for Text Classification
Pepa Atanasova | Jakob Grue Simonsen | Christina Lioma | Isabelle Augenstein
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Recent developments in machine learning have introduced models that approach human performance at the cost of increased architectural complexity. Efforts to make the rationales behind the models’ predictions transparent have inspired an abundance of new explainability techniques. Provided with an already trained model, they compute saliency scores for the words of an input instance. However, there exists no definitive guide on (i) how to choose such a technique given a particular application task and model architecture, and (ii) the benefits and drawbacks of using each such technique. In this paper, we develop a comprehensive list of diagnostic properties for evaluating existing explainability techniques. We then employ the proposed list to compare a set of diverse explainability techniques on downstream text classification tasks and neural network architectures. We also compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model’s performance and the agreement of its rationales with human ones. Overall, we find that the gradient-based explanations perform best across tasks and model architectures, and we present further insights into the properties of the reviewed explainability techniques.

pdf bib
SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020)
Marcos Zampieri | Preslav Nakov | Sara Rosenthal | Pepa Atanasova | Georgi Karadzhov | Hamdy Mubarak | Leon Derczynski | Zeses Pitenis | Çağrı Çöltekin
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We present the results and the main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval-2020). The task included three subtasks corresponding to the hierarchical taxonomy of the OLID schema from OffensEval-2019, and it was offered in five languages: Arabic, Danish, English, Greek, and Turkish. OffensEval-2020 was one of the most popular tasks at SemEval-2020, attracting a large number of participants across all subtasks and languages: a total of 528 teams signed up to participate in the task, 145 teams submitted official runs on the test data, and 70 teams submitted system description papers.

2019

pdf bib
SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
Tsvetomila Mihaylova | Georgi Karadzhov | Pepa Atanasova | Ramy Baly | Mitra Mohtarami | Preslav Nakov
Proceedings of the 13th International Workshop on Semantic Evaluation

We present SemEval-2019 Task 8 on Fact Checking in Community Question Answering Forums, which features two subtasks. Subtask A is about deciding whether a question asks for factual information vs. an opinion/advice vs. just socializing. Subtask B asks to predict whether an answer to a factual question is true, false or not a proper answer. We received 17 official submissions for subtask A and 11 official submissions for Subtask B. For subtask A, all systems improved over the majority class baseline. For Subtask B, all systems were below a majority class baseline, but several systems were very close to it. The leaderboard and the data from the competition can be found at http://competitions.codalab.org/competitions/20022.

pdf bib
It Takes Nine to Smell a Rat: Neural Multi-Task Learning for Check-Worthiness Prediction
Slavena Vasileva | Pepa Atanasova | Lluís Màrquez | Alberto Barrón-Cedeño | Preslav Nakov
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

We propose a multi-task deep-learning approach for estimating the check-worthiness of claims in political debates. Given a political debate, such as the 2016 US Presidential and Vice-Presidential ones, the task is to predict which statements in the debate should be prioritized for fact-checking. While different fact-checking organizations would naturally make different choices when analyzing the same debate, we show that it pays to learn from multiple sources simultaneously (PolitiFact, FactCheck, ABC, CNN, NPR, NYT, Chicago Tribune, The Guardian, and Washington Post) in a multi-task learning setup, even when a particular source is chosen as a target to imitate. Our evaluation shows state-of-the-art results on a standard dataset for the task of check-worthiness prediction.